STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
rmfRibosome modulation factor; During stationary phase, converts 70S ribosomes to an immature dimeric form (90S ribosomes) which are converted to inactive 100S ribosomes (a process called ribosomal hibernation) by the hibernation promoting factor HPF. Inactivates ribosomes by covering the peptidyl transferase (PTase) center of the 23S rRNA and the entrance of peptide exit tunnel. However crystallization with T.thermophilus 70S ribosomes shows it binds near the 3'-end of the 16S rRNA near the anti-Shine-Dalgarno sequence, where it would sterically hinder translation inititation. In this cr [...] (55 aa)    
Predicted Functional Partners:
hpf
Ribosome hibernation promoting factor HPF; During stationary phase, promotes and stabilizes dimerization of 70S ribosomes by the ribosome modulation factor (RMF), leading to the formation of inactive 100S ribosomes. Converts immature 90S particles formed by RMF into 100S ribosomes. Crystallization with T.thermophilus 70S ribosomes shows it binds in the channel between the head and body of the 30S subunit, where mRNA, tRNAs, initiation factors IF1 and IF3 and elongation factor G would bind; however RMF is still able to bind. In this crystal binding of HPF induces movement of the 30S hea [...]
   
 
 0.998
raiA
Cold shock protein associated with 30S ribosomal subunit; During stationary phase prevents 70S dimer formation, probably in order to regulate translation efficiency during transition between the exponential and the stationary phases. During environmental stress such as cold shock or excessive cell density at stationary phase, stabilizes the 70S ribosome against dissociation, inhibits translation elongation and increases translation accuracy. When normal growth conditions are restored, is quickly released from the ribosome. Has been suggested to inhibit translation elongation by blockin [...]
   
  
 0.992
tufA
Translation elongation factor EF-Tu 1; This protein promotes the GTP-dependent binding of aminoacyl- tRNA to the A-site of ribosomes during protein biosynthesis. Plays a stimulatory role in trans-translation; binds tmRNA. (Microbial infection) Upon infection by bacteriophage Qbeta, part of the viral RNA-dependent RNA polymerase complex. With EF-Ts may provide a stabilizing scaffold for the beta (catalytic) subunit. Helps separate the double-stranded RNA of the template and growing RNA during elongation. With the beta subunit helps form the exit tunnel for template RNA. (Microbial infe [...]
   
 
 0.902
tufB
Translation elongation factor EF-Tu 2; This protein promotes the GTP-dependent binding of aminoacyl- tRNA to the A-site of ribosomes during protein biosynthesis. Plays a stimulatory role in trans-translation, binds tmRNA. (Microbial infection) Upon infection by bacteriophage Qbeta, part of the viral RNA-dependent RNA polymerase complex. With EF-Ts may provide a stabilizing scaffold for the beta (catalytic) subunit. Helps separate the double-stranded RNA of the template and growing RNA during elongation. With the beta subunit helps form the exit tunnel for template RNA. The GTPase acti [...]
   
  
 0.902
cspC
Stress protein, member of the CspA-family; Cold shock protein; Protein involved in transcription activator activity, transcription and response to temperature stimulus.
   
  
 0.885
yaeQ
PDDEXK superfamily protein.
   
    0.875
minE
Cell division topological specificity factor; Prevents the cell division inhibition by proteins MinC and MinD at internal division sites while permitting inhibition at polar sites. This ensures cell division at the proper site by restricting the formation of a division septum at the midpoint of the long axis of the cell.
   
    0.874
yodC
Uncharacterized protein.
   
    0.868
yobF
DUF2527 family heat-induced protein.
   
    0.862
ompT
DLP12 prophage; Protease that can cleave T7 RNA polymerase, ferric enterobactin receptor protein (FEP), antimicrobial peptide protamine and other proteins. This protease has a specificity for paired basic residues.
   
    0.856
Your Current Organism:
Escherichia coli K12
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (32%) [HD]