STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
dhaMPutative dihydroxyacetone-specific PTS enzymes: HPr, EI components; Component of the dihydroxyacetone kinase complex, which is responsible for the phosphoenolpyruvate (PEP)-dependent phosphorylation of dihydroxyacetone. DhaM serves as the phosphoryl donor. Is phosphorylated by phosphoenolpyruvate in an EI- and HPr-dependent reaction, and a phosphorelay system on histidine residues finally leads to phosphoryl transfer to DhaL and dihydroxyacetone. (472 aa)    
Predicted Functional Partners:
dhaL
Dihydroxyacetone kinase, C-terminal domain; ADP-binding subunit of the dihydroxyacetone kinase, which is responsible for the phosphoenolpyruvate (PEP)-dependent phosphorylation of dihydroxyacetone. DhaL-ADP is converted to DhaL- ATP via a phosphoryl group transfer from DhaM and transmits it to dihydroxyacetone bound to DhaK. DhaL acts also as coactivator of the transcription activator DhaR by binding to the sensor domain of DhaR. In the presence of dihydroxyacetone, DhaL-ADP displaces DhaK and stimulates DhaR activity. In the absence of dihydroxyacetone, DhaL-ADP is converted by the PT [...]
 
 0.999
dhaK
Dihydroxyacetone kinase, PTS-dependent, dihydroxyacetone-binding subunit; Dihydroxyacetone binding subunit of the dihydroxyacetone kinase, which is responsible for the phosphoenolpyruvate (PEP)- dependent phosphorylation of dihydroxyacetone via a phosphoryl group transfer from DhaL-ATP. Binds covalently dihydroxyacetone in hemiaminal linkage. DhaK acts also as corepressor of the transcription activator DhaR by binding to the sensor domain of DhaR. In the presence of dihydroxyacetone, DhaL-ADP displaces DhaK and stimulates DhaR activity. In the absence of dihydroxyacetone, DhaL- ADP is [...]
 
 0.999
gldA
Glycerol dehydrogenase, NAD+ dependent; Catalyzes the NAD-dependent oxidation of glycerol to dihydroxyacetone (glycerone). Allows microorganisms to utilize glycerol as a source of carbon under anaerobic conditions. In E.coli, an important role of GldA is also likely to regulate the intracellular level of dihydroxyacetone by catalyzing the reverse reaction, i.e. the conversion of dihydroxyacetone into glycerol. Possesses a broad substrate specificity, since it is also able to oxidize 1,2-propanediol and to reduce glycolaldehyde, methylglyoxal and hydroxyacetone into ethylene glycol, lac [...]
    
 0.957
crr
Glucose-specific enzyme IIA component of PTS; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The enzyme II complex composed of PtsG and Crr is involved in glucose transport. The non-phosphorylated EIII-Glc is an inhibitor for uptake of certain sugars such as maltose, melibiose, lactose, and glycerol. Phosphorylated EIII-Glc, however, may be an activator for adenylate cyclase. It is an im [...]
  
 0.946
frwA
Putative PTS enzyme: Hpr, enzyme I and II components; Multifunctional protein that includes general (non sugar- specific) and sugar-specific components of the phosphoenolpyruvate- dependent sugar phosphotransferase system (sugar PTS). This major carbohydrate active transport system catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The enzyme II FrwABC PTS system is involved in fructose transport.
  
0.940
fryA
Putative PTS enzyme: Hpr, enzyme I and IIA components; Multifunctional protein that includes general (non sugar- specific) and sugar-specific components of the phosphoenolpyruvate- dependent sugar phosphotransferase system (sugar PTS). This major carbohydrate active transport system catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The enzyme II FryABC PTS system is involved in fructose transport.
  
0.939
dhaR
dhaKLM operon transcription activator; Positively regulates the dhaKLM operon from a sigma-70 promoter. Represses its own expression.
 
  
 0.938
glpD
Sn-glycerol-3-phosphate dehydrogenase, aerobic, FAD/NAD(P)-binding; Conversion of glycerol 3-phosphate to dihydroxyacetone. Uses molecular oxygen or nitrate as electron acceptor.
  
 
 0.911
glpA
Anaerobic sn-glycerol-3-phosphate dehydrogenase, large FAD/NAD(P)-binding subunit; Conversion of glycerol 3-phosphate to dihydroxyacetone. Uses fumarate or nitrate as electron acceptor.
 
 
 0.908
ptsH
Phosphohistidinoprotein-hexose phosphotransferase component of PTS system (Hpr); General (non sugar-specific) component of the phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS). This major carbohydrate active-transport system catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The phosphoryl group from phosphoenolpyruvate (PEP) is transferred to the phosphoryl carrier protein HPr by enzyme I. Phospho-HPr then transfers it to the PTS EIIA domain.
 
  
 0.897
Your Current Organism:
Escherichia coli K12
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (32%) [HD]