STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
sufESulfur acceptor protein; Participates in cysteine desulfuration mediated by SufS. Cysteine desulfuration mobilizes sulfur from L-cysteine to yield L- alanine and constitutes an essential step in sulfur metabolism for biosynthesis of a variety of sulfur-containing biomolecules. Functions as a sulfur acceptor for SufS, by mediating the direct transfer of the sulfur atom from the S-sulfanylcysteine of SufS, an intermediate product of cysteine desulfuration process. Together with the SufBCD complex, it thereby enhances up to 50-fold, the cysteine desulfurase activity of SufS. Component of [...] (138 aa)    
Predicted Functional Partners:
sufS
Cysteine desulfurase, stimulated by SufE; Cysteine desulfurases mobilize the sulfur from L-cysteine to yield L-alanine, an essential step in sulfur metabolism for biosynthesis of a variety of sulfur-containing biomolecules. Component of the suf operon, which is activated and required under specific conditions such as oxidative stress and iron limitation. Acts as a potent selenocysteine lyase in vitro, that mobilizes selenium from L- selenocysteine. Selenocysteine lyase activity is however unsure in vivo. Belongs to the class-V pyridoxal-phosphate-dependent aminotransferase family. Csd [...]
 0.999
sufB
Component of SufBCD Fe-S cluster assembly scaffold; The SufBCD complex acts synergistically with SufE to stimulate the cysteine desulfurase activity of SufS. The SufBCD complex contributes to the assembly or repair of oxygen-labile iron-sulfur clusters under oxidative stress. May facilitate iron uptake from extracellular iron chelators under iron limitation.
 
 0.999
sufD
Component of SufBCD Fe-S cluster assembly scaffold; The SufBCD complex acts synergistically with SufE to stimulate the cysteine desulfurase activity of SufS. The SufBCD complex contributes to the assembly or repair of oxygen-labile iron-sulfur clusters under oxidative stress. May facilitate iron uptake from extracellular iron chelators under iron limitation. Required for the stability of the FhuF protein.
 
 0.997
sufC
SufBCD Fe-S cluster assembly scaffold protein, ATP-binding protein; Has low ATPase activity. The SufBCD complex acts synergistically with SufE to stimulate the cysteine desulfurase activity of SufS. The SufBCD complex contributes to the assembly or repair of oxygen-labile iron-sulfur clusters under oxidative stress. May facilitate iron uptake from extracellular iron chelators under iron limitation.
 
 0.996
csdA
Cysteine sulfinate desulfinase; Catalyzes the removal of elemental sulfur and selenium atoms from L-cysteine, L-cystine, L-selenocysteine, and L-selenocystine to produce L-alanine, and transiently retains the released sulfur atom on a cysteine residue, in the form of a persulfide. Can also desulfinate L-cysteine sulfinate, which is the best substrate of the enzyme. Functions as a selenium delivery protein in the pathway for the biosynthesis of selenophosphate. Seems to participate in Fe/S biogenesis by recruiting the SufBCD-SufE proteins. Transfers sulfur to CsdE that increases the cys [...]
 0.985
sufA
Fe-S cluster assembly protein.
 
  
 0.981
csdE
CsdA-binding activator; Stimulates the cysteine desulfurase activity of CsdA. Contains a cysteine residue (Cys-61) that acts to accept sulfur liberated via the desulfurase activity of CsdA. May be able to transfer sulfur to TcdA/CsdL. Seems to support the function of TcdA in the generation of cyclic threonylcarbamoyladenosine at position 37 (ct(6)A37) in tRNAs that read codons beginning with adenine. Does not appear to participate in Fe/S biogenesis; Belongs to the SufE family.
  
  
0.690
thiI
tRNA s(4)U8 sulfurtransferase; Catalyzes the ATP-dependent transfer of a sulfur to tRNA to produce 4-thiouridine in position 8 of tRNAs, which functions as a near-UV photosensor. Also catalyzes the transfer of sulfur to the sulfur carrier protein ThiS, forming ThiS-thiocarboxylate. This is a step in the synthesis of thiazole, in the thiamine biosynthesis pathway. The sulfur is donated as persulfide by IscS. Belongs to the ThiI family.
   
 
 0.651
ybaP
TraB family protein; Putative ligase.
      
 0.628
iscS
Cysteine desulfurase (tRNA sulfurtransferase), PLP-dependent; Master enzyme that delivers sulfur to a number of partners involved in Fe-S cluster assembly, tRNA modification or cofactor biosynthesis. Catalyzes the removal of elemental sulfur from cysteine to produce alanine. Functions as a sulfur delivery protein for Fe-S cluster synthesis onto IscU, an Fe-S scaffold assembly protein, as well as other S acceptor proteins. Preferentially binds to disordered IscU on which the Fe-S is assembled, IscU converts to the structured state and then dissociates from IscS to transfer the Fe-S to a [...]
 
 
 0.610
Your Current Organism:
Escherichia coli K12
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (20%) [HD]