STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
torYTMAO reductase III (TorYZ), cytochrome c-type subunit; Part of the anaerobic respiratory chain of trimethylamine-N- oxide reductase TorZ. Required for electron transfer to the TorZ terminal enzyme. (366 aa)    
Predicted Functional Partners:
torZ
Trimethylamine N-oxide reductase system III, catalytic subunit; Reduces trimethylamine-N-oxide (TMAO) into trimethylamine; an anaerobic reaction coupled to energy-yielding reactions. Can also reduce other N- and S-oxide compounds such as 4-methylmorpholine-N- oxide and biotin sulfoxide (BSO), but with a lower catalytic efficiency; Belongs to the prokaryotic molybdopterin-containing oxidoreductase family.
 
 
 0.999
torA
Trimethylamine N-oxide (TMAO) reductase I, catalytic subunit; Reduces trimethylamine-N-oxide (TMAO) into trimethylamine; an anaerobic reaction coupled to energy-yielding reactions.
 
 
 0.992
torD
TorA-maturation chaperone; Involved in the biogenesis of TorA. Acts on TorA before the insertion of the molybdenum cofactor and, as a result, probably favors a conformation of the apoenzyme that is competent for acquiring the cofactor.
  
 
 0.978
napB
Nitrate reductase, small, cytochrome C550 subunit, periplasmic; Electron transfer subunit of the periplasmic nitrate reductase complex NapAB. Receives electrons from the membrane-anchored tetraheme c-type NapC protein and transfers these to NapA subunit, thus allowing electron flow between membrane and periplasm. Essential for periplasmic nitrate reduction with nitrate as the terminal electron acceptor; Belongs to the NapB family.
 
  
 0.931
torC
Trimethylamine N-oxide (TMAO) reductase I, cytochrome c-type subunit; Part of the anaerobic respiratory chain of trimethylamine-N- oxide reductase TorA. Acts by transferring electrons from the membranous menaquinones to TorA. This transfer probably involves an electron transfer pathway from menaquinones to the N-terminal domain of TorC, then from the N-terminus to the C-terminus, and finally to TorA. TorC apocytochrome negatively autoregulates the torCAD operon probably by inhibiting the TorS kinase activity.
  
  
0.929
bisC
Biotin sulfoxide reductase; This enzyme may serve as a scavenger, allowing the cell to utilize biotin sulfoxide as a biotin source. It reduces a spontaneous oxidation product of biotin, D-biotin D-sulfoxide (BSO or BDS), back to biotin. Also exhibits methionine-(S)-sulfoxide (Met-S-SO) reductase activity, acting specifically on the (S) enantiomer in the free, but not the protein-bound form. It thus plays a role in assimilation of oxidized methionines.
 
  
 0.927
napF
Ferredoxin-type protein, role in electron transfer to periplasmic nitrate reductase NapA; Could be involved in the maturation of NapA, the catalytic subunit of the periplasmic nitrate reductase, before its export into the periplasm. Is not involved in the electron transfer from menaquinol or ubiquinol to the periplasmic nitrate reductase.
 
  
 0.890
napA
Nitrate reductase, periplasmic, large subunit; Catalytic subunit of the periplasmic nitrate reductase complex NapAB. Receives electrons from NapB and catalyzes the reduction of nitrate to nitrite; Belongs to the prokaryotic molybdopterin-containing oxidoreductase family. NasA/NapA/NarB subfamily.
 
  
 0.867
napH
Ferredoxin-type protein; Required for electron transfer from ubiquinol, via NapC, to the periplasmic nitrate reductase NapAB complex.
 
  
 0.850
napG
Ferredoxin-type protein; Required for electron transfer from ubiquinol, via NapC, to the periplasmic nitrate reductase NapAB complex.
 
   
 0.764
Your Current Organism:
Escherichia coli K12
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (28%) [HD]