STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
iscRIsc operon transcriptional repressor; Regulates the transcription of several operons and genes involved in the biogenesis of Fe-S clusters and Fe-S-containing proteins. Transcriptional repressor of the iscRSUA operon, which is involved in the assembly of Fe-S clusters into Fe-S proteins. In its apoform, under conditions of oxidative stress or iron deprivation, it activates the suf operon, which is a second operon involved in the assembly of Fe-S clusters. Represses its own transcription as well as that of toxin rnlA. (162 aa)    
Predicted Functional Partners:
iscU
Iron-sulfur cluster assembly scaffold protein; A scaffold on which IscS assembles Fe-S clusters. Exists as 2 interconverting forms, a structured (S) and disordered (D) form. The D- state is the preferred substrate for IscS. Converts to the S-state when an Fe-S cluster is assembled, which helps it dissociate from IscS to transfer the Fe-S to an acceptor. It is likely that Fe-S cluster coordination is flexible as the role of this complex is to build and then hand off Fe-S clusters; Belongs to the NifU family.
  
  
 0.999
iscS
Cysteine desulfurase (tRNA sulfurtransferase), PLP-dependent; Master enzyme that delivers sulfur to a number of partners involved in Fe-S cluster assembly, tRNA modification or cofactor biosynthesis. Catalyzes the removal of elemental sulfur from cysteine to produce alanine. Functions as a sulfur delivery protein for Fe-S cluster synthesis onto IscU, an Fe-S scaffold assembly protein, as well as other S acceptor proteins. Preferentially binds to disordered IscU on which the Fe-S is assembled, IscU converts to the structured state and then dissociates from IscS to transfer the Fe-S to a [...]
 
  
 0.999
hscB
HscA co-chaperone, J domain-containing protein Hsc56; Co-chaperone involved in the maturation of iron-sulfur cluster-containing proteins. Seems to help targeting proteins to be folded toward HscA; Belongs to the HscB family.
  
 
 0.996
iscA
FeS cluster assembly protein; Is able to transfer iron-sulfur clusters to apo-ferredoxin. Multiple cycles of [2Fe2S] cluster formation and transfer are observed, suggesting that IscA acts catalytically. Recruits intracellular free iron so as to provide iron for the assembly of transient iron-sulfur cluster in IscU in the presence of IscS, L-cysteine and the thioredoxin reductase system TrxA/TrxB; Belongs to the HesB/IscA family.
  
  
 0.976
hscA
DnaK-like molecular chaperone specific for IscU; Chaperone involved in the maturation of iron-sulfur cluster- containing proteins. Has a low intrinsic ATPase activity which is markedly stimulated by HscB. Involved in the maturation of IscU; Belongs to the heat shock protein 70 family.
  
  
 0.973
fdx
[2Fe-2S] ferredoxin; Ferredoxin are iron-sulfur proteins that transfer electrons in a wide variety of metabolic reactions. Although the function of this ferredoxin is unknown it is probable that it has a role as a cellular electron transfer protein. Involved in the in vivo assembly of the Fe-S clusters in a wide variety of iron-sulfur proteins.
  
  
 0.968
iscX
Fe(2+) donor and activity modulator for cysteine desulfurase; May function as iron donor in the assembly of iron-sulfur clusters; Belongs to the IscX family.
  
  
 0.959
nfuA
Fe/S biogenesis protein, putative scaffold/chaperone protein; Involved in iron-sulfur cluster biogenesis under severe conditions such as iron starvation or oxidative stress. Binds a 4Fe-4S cluster, can transfer this cluster to apoproteins, and thereby intervenes in the maturation of Fe/S proteins. Could also act as a scaffold/chaperone for damaged Fe/S proteins. Required for E.coli to sustain oxidative stress and iron starvation. Also necessary for the use of extracellular DNA as the sole source of carbon and energy. Belongs to the NfuA family.
  
  
 0.904
erpA
Iron-sulfur cluster insertion protein; Probably involved in the insertion of Fe-S clusters into apoproteins in vivo including IspG and/or IspH. Essential for growth under aerobic conditions and for anaerobic respiration but not for fermentation. In vitro it binds Fe-S clusters and transfers them to apo-IspG, which is involved in quinone biosynthesis among many other cell components. Experiments indicate that it is probably also involved in the insertion of other Fe-S clusters than IspG/IspH; Belongs to the HesB/IscA family.
 
  
 0.894
soxR
Redox-sensitive transcriptional activator of soxS; Activates the transcription of the soxS gene which itself controls the superoxide response regulon. SoxR contains a 2Fe-2S iron- sulfur cluster that may act as a redox sensor system that recognizes superoxide. The variable redox state of the Fe-S cluster is employed in vivo to modulate the transcriptional activity of SoxR in response to specific types of oxidative stress. Upon reduction of 2Fe-2S cluster, SoxR reversibly loses its transcriptional activity, but retains its DNA binding affinity.
   
  
 0.825
Your Current Organism:
Escherichia coli K12
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (30%) [HD]