STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
lepABack-translocating elongation factor EF4, GTPase; Required for accurate and efficient protein synthesis under certain stress conditions. May act as a fidelity factor of the translation reaction, by catalyzing a one-codon backward translocation of tRNAs on improperly translocated ribosomes. Back-translocation proceeds from a post-translocation (POST) complex to a pre- translocation (PRE) complex, thus giving elongation factor G a second chance to translocate the tRNAs correctly. Binds to ribosomes in a GTP- dependent manner; Belongs to the TRAFAC class translation factor GTPase superfam [...] (599 aa)    
Predicted Functional Partners:
rpsB
30S ribosomal subunit protein S2; Required for ribosomal protein S1 to bind to the 30S subunit.
  
 
 0.997
lepB
Leader peptidase (signal peptidase I); Belongs to the peptidase S26 family.
  
 
 0.996
rplM
50S ribosomal subunit protein L13; This protein is one of the early assembly proteins of the 50S ribosomal subunit, although it is not seen to bind rRNA by itself. It is important during the early stages of 50S assembly.
 
 
 0.996
rpsO
30S ribosomal subunit protein S15; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it helps nucleate assembly of the platform of the 30S subunit by binding and bridging several RNA helices of the 16S rRNA. Binds to its own mRNA, stabilizing it 5-UTR and preventing its translation.
 
 
 0.995
rpsI
30S ribosomal subunit protein S9; The C-terminal tail plays a role in the affinity of the 30S P site for different tRNAs. Mutations that decrease this affinity are suppressed in the 70S ribosome.
 
 
 0.995
rpsE
30S ribosomal subunit protein S5; With S4 and S12 plays an important role in translational accuracy. Many suppressors of streptomycin-dependent mutants of protein S12 are found in this protein, some but not all of which decrease translational accuracy (ram, ribosomal ambiguity mutations). The physical location of this protein suggests it may also play a role in mRNA unwinding by the ribosome, possibly by forming part of a processivity clamp.
  
 
 0.995
rplB
50S ribosomal subunit protein L2; One of the primary rRNA binding proteins. Located near the base of the L1 stalk, it is probably also mobile. Required for association of the 30S and 50S subunits to form the 70S ribosome, for tRNA binding and peptide bond formation. It has been suggested to have peptidyltransferase activity; this is highly controversial. Belongs to the universal ribosomal protein uL2 family.
  
 
 0.995
rplC
50S ribosomal subunit protein L3; One of two assembly initiator proteins, it binds directly near the 3'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit.
  
 
 0.995
rpsG
30S ribosomal subunit protein S7; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. Is located at the subunit interface close to the decoding center, where it has been shown to contact mRNA. Has been shown to contact tRNA in both the P and E sites; it probably blocks exit of the E site tRNA.
  
 
 0.995
rpsL
30S ribosomal subunit protein S12; With S4 and S5 plays an important role in translational accuracy. Cryo-EM studies suggest that S12 contacts the EF-Tu bound tRNA in the A-site during codon-recognition. This contact is most likely broken as the aminoacyl-tRNA moves into the peptidyl transferase center in the 50S subunit; Belongs to the universal ribosomal protein uS12 family.
  
 
 0.995
Your Current Organism:
Escherichia coli K12
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (26%) [HD]