STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
mutHMethyl-directed mismatch repair protein; Sequence-specific endonuclease that cleaves unmethylated GATC sequences. It is involved in DNA mismatch repair. (229 aa)    
Predicted Functional Partners:
mutL
Methyl-directed mismatch repair protein; This protein is involved in the repair of mismatches in DNA. It is required for dam-dependent methyl-directed DNA mismatch repair. May act as a 'molecular matchmaker', a protein that promotes the formation of a stable complex between two or more DNA-binding proteins in an ATP-dependent manner without itself being part of the final effector complex. The ATPase activity of MutL is stimulated by DNA.
   
 0.999
seqA
Negative modulator of initiation of replication; Negative regulator of replication initiation, which contributes to regulation of DNA replication and ensures that replication initiation occurs exactly once per chromosome per cell cycle. Binds to pairs of hemimethylated GATC sequences in the oriC region, thus preventing assembly of replication proteins and re- initiation at newly replicated origins. Repression is relieved when the region becomes fully methylated. Can also bind to hemimethylated GATC sequences outside of oriC region. Binds, with less affinity, to fully methylated GATC si [...]
  
   
 0.949
dam
DNA adenine methyltransferase; Methylates DNA within the sequence GATC and protects the DNA from cleavage by the restriction endonuclease MboI. Although it shares sequence specificity with a number of type II restriction endonucleases and methylases, it is thought to act in postreplication mismatch repair rather than as a part of a restriction modification system. May also play a role in DNA replication.
 
  
 0.949
uvrD
DNA-dependent ATPase I and helicase II; A helicase with DNA-dependent ATPase activity. Unwinds DNA duplexes with 3' to 5' polarity with respect to the bound strand. Initiates unwinding more efficiently from a nicked substrate than ds duplex DNA. Involved in the post-incision events of nucleotide excision repair and methyl-directed mismatch repair, and probably also in repair of alkylated DNA (Probable).
      
 0.949
exoX
Exodeoxyribonuclease 10; Capable of degrading both single-strand and double-strand DNA with 3' to 5' polarity. Has higher affinity for ssDNA ends than for dsDNA.
      
 0.878
recJ
ssDNA exonuclease, 5' --> 3'-specific; Single-stranded-DNA-specific exonuclease. Required for many types of recombinational events, although the stringency of the requirement for RecJ appears to vary with the type of recombinational event monitored and the other recombination gene products which are available.
      
 0.842
vsr
DNA mismatch endonuclease of very short patch repair; Deamination of 5-methylcytosine in DNA results in T/G mismatches. If unrepaired, these mismatches can lead to C-to-C transition mutations. The very short patch (VSP) repair process in E.coli counteracts the mutagenic process by repairing the mismatches in favor of the G-containing strand. This enzyme is an endonuclease that nicks double-stranded DNA within the sequence CT(AT)GN or NT(AT)GG next to the thymidine residue that is mismatched to 2'-deoxyguanosine. The incision is mismatch-dependent and strand-specific; Belongs to the vsr [...]
     
 0.840
uvrB
Exision nuclease of nucleotide excision repair, DNA damage recognition component; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. Upon binding of the UvrA(2)B(2) complex to a putative damaged site, the DNA wraps around one UvrB monomer. DNA wrap is dependent on ATP binding by UvrB and probably causes local melting of the DNA helix, facilitating insertion of UvrB beta-hairpin between the DNA strands. Then UvrB probes one DNA strand for the presence of a lesi [...]
     
 0.828
uvrA
ATPase and DNA damage recognition protein of nucleotide excision repair excinuclease UvrABC; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrA is an ATPase and a DNA-binding protein. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. When the presence of a lesion has been verified by UvrB, the UvrA molecules dissociate.
     
 0.828
ygdQ
UPF0053 family inner membrane protein; Putative transport protein.
  
  
 0.826
Your Current Organism:
Escherichia coli K12
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (34%) [HD]