STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
rpsU30S ribosomal subunit protein S21; Protein involved in structural constituent of ribosome and translation; Belongs to the bacterial ribosomal protein bS21 family. (71 aa)    
Predicted Functional Partners:
rpsT
30S ribosomal subunit protein S20; Binds directly to 16S ribosomal RNA.
  
 0.999
rpsB
30S ribosomal subunit protein S2; Required for ribosomal protein S1 to bind to the 30S subunit.
  
 0.999
rpsP
30S ribosomal subunit protein S16; In addition to being a ribosomal protein, S16 also has a cation-dependent endonuclease activity.
  
 0.999
relA
(p)ppGpp synthetase I/GTP pyrophosphokinase; In eubacteria ppGpp (guanosine 3'-diphosphate 5-' diphosphate) is a mediator of the stringent response which coordinates a variety of cellular activities in response to changes in nutritional abundance. This enzyme catalyzes the formation of pppGpp which is then hydrolyzed to form ppGpp. The second messengers ppGpp and c-di-GMP together control biofilm formation in response to translational stress; ppGpp represses biofilm formation while c-di-GMP induces it. ppGpp activates transcription of CsrA-antagonistic small RNAs CsrB and CsrC, which d [...]
   
 
 0.999
rpsO
30S ribosomal subunit protein S15; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it helps nucleate assembly of the platform of the 30S subunit by binding and bridging several RNA helices of the 16S rRNA. Binds to its own mRNA, stabilizing it 5-UTR and preventing its translation.
   
 0.999
rplU
50S ribosomal subunit protein L21; This protein binds to 23S rRNA in the presence of protein L20.
   
 
 0.999
rplM
50S ribosomal subunit protein L13; This protein is one of the early assembly proteins of the 50S ribosomal subunit, although it is not seen to bind rRNA by itself. It is important during the early stages of 50S assembly.
   
 
 0.999
rpsK
30S ribosomal subunit protein S11; Located on the platform of the 30S subunit, it bridges several disparate RNA helices of the 16S rRNA. Forms part of the Shine- Dalgarno cleft in the 70S ribosome (By similarity); Belongs to the universal ribosomal protein uS11 family.
  
 0.999
rpsJ
30S ribosomal subunit protein S10; Involved in the binding of tRNA to the ribosomes. In addition, in complex with NusB, is involved in the regulation of ribosomal RNA (rRNA) biosynthesis by transcriptional antitermination. S10 binds RNA non-specifically and increases the affinity of NusB for the boxA RNA sequence. S10 may constitute the critical antitermination component of the NusB-S10 complex. Belongs to the universal ribosomal protein uS10 family.
   
 0.999
tufA
Translation elongation factor EF-Tu 1; This protein promotes the GTP-dependent binding of aminoacyl- tRNA to the A-site of ribosomes during protein biosynthesis. Plays a stimulatory role in trans-translation; binds tmRNA. (Microbial infection) Upon infection by bacteriophage Qbeta, part of the viral RNA-dependent RNA polymerase complex. With EF-Ts may provide a stabilizing scaffold for the beta (catalytic) subunit. Helps separate the double-stranded RNA of the template and growing RNA during elongation. With the beta subunit helps form the exit tunnel for template RNA. (Microbial infe [...]
  
 
 0.999
Your Current Organism:
Escherichia coli K12
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: medium (62%) [HD]