STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
rpeD-ribulose-5-phosphate 3-epimerase; Catalyzes the reversible epimerization of D-ribulose 5- phosphate to D-xylulose 5-phosphate. (225 aa)    
Predicted Functional Partners:
tktA
Transketolase 1, thiamine triphosphate-binding; Catalyzes the transfer of a two-carbon ketol group from a ketose donor to an aldose acceptor, via a covalent intermediate with the cofactor thiamine pyrophosphate. Thus, catalyzes the reversible transfer of a two-carbon ketol group from sedoheptulose-7-phosphate to glyceraldehyde-3-phosphate, producing xylulose-5-phosphate and ribose- 5-phosphate.
 0.999
tktB
Transketolase 2, thiamine triphosphate-binding; Catalyzes the reversible transfer of a two-carbon ketol group from sedoheptulose-7-phosphate to glyceraldehyde-3-phosphate, producing xylulose-5-phosphate and ribose-5-phosphate. Catalyzes the transfer of a two-carbon ketol group from a ketose donor to an aldose acceptor, via a covalent intermediate with the cofactor thiamine pyrophosphate (By similarity).
 0.988
rpiA
Ribose 5-phosphate isomerase, constitutive; Involved in the first step of the non-oxidative branch of the pentose phosphate pathway. It catalyzes the reversible conversion of ribose-5-phosphate to ribulose 5-phosphate. Can also act on D-ribose-5- diphosphate and D-ribose-5-triphosphate as substrate.
  
 0.986
gnd
6-phosphogluconate dehydrogenase, decarboxylating; Catalyzes the oxidative decarboxylation of 6-phosphogluconate to ribulose 5-phosphate and CO(2), with concomitant reduction of NADP to NADPH.
  
 0.984
gph
Phosphoglycolate phosphatase; Specifically catalyzes the dephosphorylation of 2- phosphoglycolate (2P-Gly). Is involved in the dissimilation of the intracellular 2-phosphoglycolate formed during the DNA repair of 3'- phosphoglycolate ends, a major class of DNA lesions induced by oxidative stress; Belongs to the HAD-like hydrolase superfamily. CbbY/CbbZ/Gph/YieH family.
 
  
 0.978
rpiB
Ribose 5-phosphate isomerase B/allose 6-phosphate isomerase; Catalyzes the interconversion of ribulose-5-P and ribose-5-P. It probably also has activity on D-allose 6-phosphate.
 
  
 0.962
trpS
tryptophanyl-tRNA synthetase; Catalyzes the attachment of tryptophan to tRNA(Trp). Amino acylates tRNA(Trp) with both L- and D-tryptophan, although D-tryptophan is a poor substrate ; Belongs to the class-I aminoacyl-tRNA synthetase family.
 
  
 0.961
xylB
Xylulokinase; Catalyzes the phosphorylation of D-xylulose to D-xylulose 5- phosphate. Also catalyzes the phosphorylation of 1- deoxy-D-xylulose to 1-deoxy-D-xylulose 5-phosphate, with lower efficiency. Can also use D-ribulose, xylitol and D- arabitol, but D-xylulose is preferred over the other substrates. Has a weak substrate-independent Mg-ATP-hydrolyzing activity ; Belongs to the FGGY kinase family.
 
  
 0.951
araB
L-ribulokinase; Protein involved in carbohydrate catabolic process; Belongs to the ribulokinase family.
 
   
 0.933
araD
L-ribulose-5-phosphate 4-epimerase; Involved in the degradation of L-arabinose. Catalyzes the interconversion of L-ribulose 5-phosphate (LRu5P) and D- xylulose 5-phosphate (D-Xu5P) via a retroaldol/aldol mechanism (carbon- carbon bond cleavage analogous to a class II aldolase reaction).
     
 0.926
Your Current Organism:
Escherichia coli K12
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (38%) [HD]