STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
pldBLysophospholipase L2; Protein involved in phosphorus metabolic process. (340 aa)    
Predicted Functional Partners:
yigL
Pyridoxal phosphate phosphatase; Catalyzes Strongly the dephosphorylation of pyridoxal- phosphate (PLP) and moderately the dephosphorylation of 2-deoxyglucose 6-phosphate (2bGLU6P) and beta-glucose 6-phosphate (bGlu6P). Also hydrolyzes both purines (GMP and IMP) and pyrimidines as secondary substrates.
 
  
 0.994
pldA
Outer membrane phospholipase A; Has broad substrate specificity including hydrolysis of phosphatidylcholine with phospholipase A2 (EC 3.1.1.4) and phospholipase A1 (EC 3.1.1.32) activities. Strong expression leads to outer membrane breakdown and cell death; is dormant in normal growing cells. Required for efficient secretion of bacteriocins.
  
 
 0.981
aas
Fused 2-acylglycerophospho-ethanolamine acyl transferase/acyl-acyl carrier protein synthetase; Plays a role in lysophospholipid acylation. Transfers fatty acids to the 1-position via an enzyme-bound acyl-ACP intermediate in the presence of ATP and magnesium. Its physiological function is to regenerate phosphatidylethanolamine from 2-acyl-glycero-3- phosphoethanolamine (2-acyl-GPE) formed by transacylation reactions or degradation by phospholipase A1.
  
 0.951
glpQ
Glycerophosphodiester phosphodiesterase, periplasmic; Glycerophosphoryl diester phosphodiesterase hydrolyzes deacylated phospholipids to G3P and the corresponding alcohols.
    
 0.914
ugpQ
Glycerophosphodiester phosphodiesterase, cytosolic; Glycerophosphoryl diester phosphodiesterase hydrolyzes deacylated phospholipids to G3P and the corresponding alcohols.
    
 0.910
yigM
Putative inner membrane EamA-like transporter; Uptake of biotin. Acts probably by facilitated diffusion. Belongs to the drug/metabolite transporter (DMT) superfamily. 10 TMS drug/metabolite exporter (DME) (TC 2.A.7.3) family.
    
 0.891
nuoC
NADH:ubiquinone oxidoreductase, fused CD subunit; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; In the C-terminal section; belongs to the complex I 49 kDa subunit family.
   
 
 0.880
tesA
acyl-CoA thioesterase 1 and protease I and lysophospholipase L1; TesA is a multifunctional esterase that can act as a thioesterase, lysophospholipase and protease. TesA functions as a thioesterase specific for fatty acyl thioesters of greater than ten carbons, with highest activity on palmitoyl-CoA, cis-vaccenyl-CoA and palmitoleoyl-CoA. TesA also possesses an arylesterase activity towards short acyl-chain aromatic esters such as alpha-naphthyl acetate, alpha-naphthyl butyrate, benzyl acetate and phenyl acetate. Also able to hydrolyze short acyl-chain triacylglycerols such as triacetin [...]
  
  
 0.808
nuoF
NADH:ubiquinone oxidoreductase, chain F; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient.
   
 
 0.780
nuoG
NADH:ubiquinone oxidoreductase, chain G; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient.
   
 
 0.756
Your Current Organism:
Escherichia coli K12
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: medium (46%) [HD]