STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
rsdStationary phase protein, binds sigma 70 RNA polymerase subunit; Binds RpoD and negatively regulates RpoD-mediated transcription activation by preventing the interaction between the primary sigma factor RpoD with the catalytic core of the RNA polymerase and with promoter DNA. May be involved in replacement of the RNA polymerase sigma subunit from RpoD to RpoS during the transition from exponential growth to the stationary phase. Belongs to the Rsd/AlgQ family. (158 aa)    
Predicted Functional Partners:
rpoD
RNA polymerase, sigma 70 (sigma D) factor; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is the primary sigma factor during exponential growth. Preferentially transcribes genes associated with fast growth, such as ribosomal operons, other protein-synthesis related genes, rRNA- and tRNA-encoding genes and prfB. Belongs to the sigma-70 factor family. RpoD/SigA subfamily.
   
 0.999
ptsH
Phosphohistidinoprotein-hexose phosphotransferase component of PTS system (Hpr); General (non sugar-specific) component of the phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS). This major carbohydrate active-transport system catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The phosphoryl group from phosphoenolpyruvate (PEP) is transferred to the phosphoryl carrier protein HPr by enzyme I. Phospho-HPr then transfers it to the PTS EIIA domain.
    
 
 0.973
rpoS
RNA polymerase, sigma S (sigma 38) factor; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is the master transcriptional regulator of the stationary phase and the general stress response. Controls, positively or negatively, the expression of several hundred genes, which are mainly involved in metabolism, transport, regulation and stress management.
  
 0.955
rseA
Anti-sigma factor; An anti-sigma factor for extracytoplasmic function (ECF) sigma factor sigma-E (RpoE). ECF sigma factors are held in an inactive form by an anti-sigma factor until released by regulated intramembrane proteolysis (RIP). RIP occurs when an extracytoplasmic signal triggers a concerted proteolytic cascade to transmit information and elicit cellular responses. The membrane-spanning regulatory substrate protein is first cut periplasmically (site-1 protease, S1P, DegS), then within the membrane itself (site-2 protease, S2P, RseP), while cytoplasmic proteases finish degrading [...]
     
 0.883
rpoE
RNA polymerase sigma E factor; Sigma factors are initiation factors that promote the attachment of RNA polymerase (RNAP) to specific initiation sites and are then released. Extracytoplasmic function (ECF) sigma-E controls the envelope stress response, responding to periplasmic protein stress, increased levels of periplasmic lipopolysaccharide (LPS) as well as heat shock and oxidative stress; it controls protein processing in the extracytoplasmic compartment. The 90 member regulon consists of the genes necessary for the synthesis and maintenance of both proteins and LPS of the outer me [...]
   
 0.838
spoT
Bifunctional (p)ppGpp synthetase II/ guanosine-3',5'-bis pyrophosphate 3'-pyrophosphohydrolase; In eubacteria ppGpp (guanosine 3'-diphosphate 5-' diphosphate) is a mediator of the stringent response which coordinates a variety of cellular activities in response to changes in nutritional abundance. This enzyme catalyzes both the synthesis and degradation of ppGpp. The second messengers ppGpp and c-di-GMP together control biofilm formation in response to translational stress; ppGpp represses biofilm formation while c-di-GMP induces it. ppGpp activates transcription of CsrA-antagonistic s [...]
     
  0.800
ytfK
DUF1107 family protein.
   
  
 0.787
yohC
Yip1 family inner membrane protein.
  
    0.769
relA
(p)ppGpp synthetase I/GTP pyrophosphokinase; In eubacteria ppGpp (guanosine 3'-diphosphate 5-' diphosphate) is a mediator of the stringent response which coordinates a variety of cellular activities in response to changes in nutritional abundance. This enzyme catalyzes the formation of pppGpp which is then hydrolyzed to form ppGpp. The second messengers ppGpp and c-di-GMP together control biofilm formation in response to translational stress; ppGpp represses biofilm formation while c-di-GMP induces it. ppGpp activates transcription of CsrA-antagonistic small RNAs CsrB and CsrC, which d [...]
     
 0.754
nudC
NADH pyrophosphatase; Catalyzes the hydrolysis of a broad range of dinucleotide pyrophosphates, but uniquely prefers the reduced form of NADH.
  
  
 0.739
Your Current Organism:
Escherichia coli K12
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: medium (72%) [HD]