STRINGSTRING
Ido1 Ido1 Tdo2 Tdo2 Kynu Kynu Afmid Afmid Tph1 Tph1 Tph2 Tph2 Cyp1a1 Cyp1a1 Cyp1b1 Cyp1b1 Maoa Maoa Il4i1 Il4i1 Maob Maob
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
Ido1Indoleamine 2,3-dioxygenase 1; Catalyzes the first and rate limiting step of the catabolism of the essential amino acid tryptophan along the kynurenine pathway. Involved in the peripheral immune tolerance, contributing to maintain homeostasis by preventing autoimmunity or immunopathology that would result from uncontrolled and overreacting immune responses. Tryptophan shortage inhibits T lymphocytes division and accumulation of tryptophan catabolites induces T-cell apoptosis and differentiation of regulatory T-cells. Acts as a suppressor of anti-tumor immunity. Limits the growth of int [...] (407 aa)    
Predicted Functional Partners:
Tdo2
Tryptophan 2,3-dioxygenase; Heme-dependent dioxygenase that catalyzes the oxidative cleavage of the L-tryptophan (L-Trp) pyrrole ring and converts L- tryptophan to N-formyl-L-kynurenine. Catalyzes the oxidative cleavage of the indole moiety.
   
 
 0.991
Kynu
Kynureninase; Catalyzes the cleavage of L-kynurenine (L-Kyn) and L-3- hydroxykynurenine (L-3OHKyn) into anthranilic acid (AA) and 3- hydroxyanthranilic acid (3-OHAA), respectively. Has a preference for the L-3-hydroxy form. Also has cysteine-conjugate-beta-lyase activity.
   
 0.984
Afmid
Kynurenine formamidase; Catalyzes the hydrolysis of N-formyl-L-kynurenine to L- kynurenine, the second step in the kynurenine pathway of tryptophan degradation. Kynurenine may be further oxidized to nicotinic acid, NAD(H) and NADP(H). Required for elimination of toxic metabolites.
   
 
 0.963
Tph1
Tryptophan 5-hydroxylase 1; Belongs to the biopterin-dependent aromatic amino acid hydroxylase family.
   
 
 0.956
Tph2
Tryptophan 5-hydroxylase 2; Belongs to the biopterin-dependent aromatic amino acid hydroxylase family.
   
 
 0.949
Cyp1a1
Cytochrome P450 1A1; A cytochrome P450 monooxygenase involved in the metabolism of various endogenous substrates, including fatty acids, steroid hormones and vitamins. Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (CPR; NADPH-ferrihemoprotein reductase). Catalyzes the hydroxylation of carbon-hydrogen bonds. Exhibits high catalytic activity for the formation of hydroxyestrogens from estrone (E1) and 17beta-estradiol (E2), namely 2-hydroxy [...]
   
 
 0.948
Cyp1b1
Cytochrome P450 1B1; A cytochrome P450 monooxygenase involved in the metabolism of various endogenous substrates, including fatty acids, steroid hormones and vitamins (By similarity). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) (By similarity). Exhibits catalytic activity for the formation of hydroxyestrogens from 17beta-estradiol (E2), namely 2- and 4-hydroxy E2. Metabolizes testosterone and progesterone [...]
   
 
 0.942
Maoa
Amine oxidase [flavin-containing] A; Catalyzes the oxidative deamination of biogenic and xenobiotic amines and has important functions in the metabolism of neuroactive and vasoactive amines in the central nervous system and peripheral tissues. MAOA preferentially oxidizes biogenic amines such as 5-hydroxytryptamine (5-HT), norepinephrine and epinephrine (By similarity).
     
 0.938
Il4i1
L-amino-acid oxidase; Lysosomal L-amino-acid oxidase with highest specific activity with phenylalanine. May play a role in lysosomal antigen processing and presentation; Belongs to the flavin monoamine oxidase family. FIG1 subfamily.
   
 
 0.936
Maob
Amine oxidase [flavin-containing] B; Catalyzes the oxidative deamination of biogenic and xenobiotic amines and has important functions in the metabolism of neuroactive and vasoactive amines in the central nervous system and peripheral tissues. MAOB preferentially degrades benzylamine and phenylethylamine (By similarity).
     
 0.935
Your Current Organism:
Mus musculus
NCBI taxonomy Id: 10090
Other names: LK3 transgenic mice, M. musculus, Mus sp. 129SV, house mouse, mouse, nude mice, transgenic mice
Server load: low (14%) [HD]