STRINGSTRING
Enc1 Enc1 Klhl25 Klhl25 Cul3 Cul3 Kbtbd8 Kbtbd8 Klhl13 Klhl13 Klhl9 Klhl9 Klhl41 Klhl41 Klhl40 Klhl40 Klhl7 Klhl7 Keap1 Keap1 Klhl42 Klhl42
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
Enc1Ectoderm-neural cortex protein 1; Actin-binding protein involved in the regulation of neuronal process formation and in differentiation of neural crest cells. Down- regulates transcription factor NF2L2/NRF2 by decreasing the rate of protein synthesis and not via a ubiquitin-mediated proteasomal degradation mechanism (By similarity). (589 aa)    
Predicted Functional Partners:
Klhl25
Kelch-like protein 25; Substrate-specific adapter of a BCR (BTB-CUL3-RBX1) E3 ubiquitin ligase complex required for translational homeostasis. The BCR(KLHL25) ubiquitin ligase complex acts by mediating ubiquitination of hypophosphorylated EIF4EBP1 (4E-BP1): ubiquitination and subsequent degradation of hypophosphorylated EIF4EBP1 (4E-BP1) probably serves as a homeostatic mechanism to maintain translation and prevent eIF4E inhibition when eIF4E levels are low. The BCR(KLHL25) complex does not target EIF4EBP1 (4E-BP1) when it is hyperphosphorylated or associated with eIF4E.
  
 
0.855
Cul3
Cullin-3; Core component of multiple cullin-RING-based BCR (BTB-CUL3- RBX1) E3 ubiquitin-protein ligase complexes which mediate the ubiquitination and subsequent proteasomal degradation of target proteins (By similarity). BCR complexes and ARIH1 collaborate in tandem to mediate ubiquitination of target proteins (By similarity). As a scaffold protein may contribute to catalysis through positioning of the substrate and the ubiquitin-conjugating enzyme (By similarity). The E3 ubiquitin-protein ligase activity of the complex is dependent on the neddylation of the cullin subunit and is inhi [...]
   
 0.846
Kbtbd8
Kelch repeat and BTB domain-containing protein 8; Substrate-specific adapter of a BCR (BTB-CUL3-RBX1) E3 ubiquitin ligase complex that acts as a regulator of neural crest specification. The BCR(KBTBD8) complex acts by mediating monoubiquitination of NOLC1 and TCOF1: monoubiquitination promotes the formation of a NOLC1-TCOF1 complex that acts as a platform to connect RNA polymerase I with enzymes responsible for ribosomal processing and modification, leading to remodel the translational program of differentiating cells in favor of neural crest specification.
  
  
0.785
Klhl13
Kelch-like protein 13; Substrate-specific adapter of a BCR (BTB-CUL3-RBX1) E3 ubiquitin-protein ligase complex required for mitotic progression and cytokinesis. The BCR(KLHL9-KLHL13) E3 ubiquitin ligase complex mediates the ubiquitination of AURKB and controls the dynamic behavior of AURKB on mitotic chromosomes and thereby coordinates faithful mitotic progression and completion of cytokinesis (By similarity).
  
 
0.778
Klhl9
Kelch-like protein 9; Substrate-specific adapter of a BCR (BTB-CUL3-RBX1) E3 ubiquitin-protein ligase complex required for mitotic progression and cytokinesis. The BCR(KLHL9-KLHL13) E3 ubiquitin ligase complex mediates the ubiquitination of AURKB and controls the dynamic behavior of AURKB on mitotic chromosomes and thereby coordinates faithful mitotic progression and completion of cytokinesis (By similarity).
  
0.777
Klhl41
Kelch-like protein 41; Involved in skeletal muscle development and differentiation. Regulates proliferation and differentiation of myoblasts and plays a role in myofibril assembly by promoting lateral fusion of adjacent thin fibrils into mature, wide myofibrils. Required for pseudopod elongation in transformed cells.
  
 
0.775
Klhl40
Kelch-like protein 40; Substrate-specific adapter of a BCR (BTB-CUL3-RBX1) E3 ubiquitin ligase complex that acts as a key regulator of skeletal muscle development. The BCR(KLHL40) complex acts by mediating ubiquitination and degradation of TFDP1, thereby regulating the activity of the E2F:DP transcription factor complex. Promotes stabilization of LMOD3 by acting as a negative regulator of LMOD3 ubiquitination; the molecular process by which it negatively regulates ubiquitination of LMOD3 is however unclear.
  
 
0.771
Klhl7
Kelch-like protein 7; Substrate-specific adapter of a BCR (BTB-CUL3-RBX1) E3 ubiquitin ligase complex. The BCR(KLHL7) complex acts by mediating ubiquitination and subsequent degradation of substrate proteins. Probably mediates 'Lys-48'-linked ubiquitination (By similarity).
  
 
0.763
Keap1
Kelch-like ECH-associated protein 1; Substrate-specific adapter of a BCR (BTB-CUL3-RBX1) E3 ubiquitin ligase complex that regulates the response to oxidative stress by targeting NFE2L2/NRF2 for ubiquitination. KEAP1 acts as a key sensor of oxidative and electrophilic stress: in normal conditions, the BCR(KEAP1) complex mediates ubiquitination and degradation of NFE2L2/NRF2, a transcription factor regulating expression of many cytoprotective genes. In response to oxidative stress, different electrophile metabolites trigger non-enzymatic covalent modifications of highly reactive cysteine [...]
  
 
0.763
Klhl42
Kelch-like protein 42; Substrate-specific adapter of a BCR (BTB-CUL3-RBX1) E3 ubiquitin-protein ligase complex required for mitotic progression and cytokinesis. The BCR(KLHL42) E3 ubiquitin ligase complex mediates the ubiquitination and subsequent degradation of KATNA1. Involved in microtubule dynamics throughout mitosis (By similarity).
  
  
0.762
Your Current Organism:
Mus musculus
NCBI taxonomy Id: 10090
Other names: LK3 transgenic mice, M. musculus, Mus sp. 129SV, house mouse, mouse, nude mice, transgenic mice
Server load: low (20%) [HD]