STRINGSTRING
Acyp2 Acyp2 Aldh1b1 Aldh1b1 Aldh3a2 Aldh3a2 Acyp1 Acyp1 Aldh7a1 Aldh7a1 Acot12 Acot12 Aldh9a1 Aldh9a1 Acss1 Acss1 Acss2 Acss2 Aldh2 Aldh2 Tpmt Tpmt
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
Acyp2Acylphosphatase-2. (106 aa)    
Predicted Functional Partners:
Aldh1b1
Aldehyde dehydrogenase X, mitochondrial; ALDHs play a major role in the detoxification of alcohol- derived acetaldehyde. They are involved in the metabolism of corticosteroids, biogenic amines, neurotransmitters, and lipid peroxidation (By similarity).
     
 0.923
Aldh3a2
Aldehyde dehydrogenase family 3 member A2; Catalyzes the oxidation of medium and long-chain aliphatic aldehydes to fatty acids. Active on a variety of saturated and unsaturated aliphatic aldehydes between 6 and 24 carbons in length. Responsible for conversion of the sphingosine 1- phosphate (S1P) degradation product hexadecenal to hexadecenoic acid.
     
 0.911
Acyp1
Acylphosphatase-1; Its physiological role is not yet clear; Belongs to the acylphosphatase family.
  
 
0.911
Aldh7a1
Alpha-aminoadipic semialdehyde dehydrogenase; Multifunctional enzyme mediating important protective effects. Metabolizes betaine aldehyde to betaine, an important cellular osmolyte and methyl donor. Protects cells from oxidative stress by metabolizing a number of lipid peroxidation-derived aldehydes. Involved in lysine catabolism (By similarity).
     
 0.905
Acot12
Acetyl-coenzyme A thioesterase; Acyl-CoA thioesterases are a group of enzymes that catalyze the hydrolysis of acyl-CoAs to the free fatty acid and coenzyme A (CoASH), providing the potential to regulate intracellular levels of acyl-CoAs, free fatty acids and CoASH. Acyl-coenzyme A thioesterase 12/ACOT12 preferentially hydrolyzes acetyl-CoA.
     
 0.903
Aldh9a1
4-trimethylaminobutyraldehyde dehydrogenase; Converts gamma-trimethylaminobutyraldehyde into gamma- butyrobetaine with high efficiency (in vitro). Can catalyze the irreversible oxidation of a broad range of aldehydes to the corresponding acids in an NAD-dependent reaction, but with low efficiency.
   
 
 0.901
Acss1
Acetyl-coenzyme A synthetase 2-like, mitochondrial; Catalyzes the synthesis of acetyl-CoA from short-chain fatty acids. Acetate is the preferred substrate. Can also utilize propionate with a much lower affinity. Provides acetyl-CoA that is utilized mainly for oxidation under ketogenic conditions. Involved in thermogenesis under ketogenic conditions, using acetate as a vital fuel when carbohydrate availability is insufficient.
   
 
  0.900
Acss2
Acetyl-coenzyme A synthetase, cytoplasmic; Catalyzes the synthesis of acetyl-CoA from short-chain fatty acids. Acetate is the preferred substrate but can also utilize propionate with a much lower affinity ; Belongs to the ATP-dependent AMP-binding enzyme family.
     
  0.900
Aldh2
Aldehyde dehydrogenase, mitochondrial; Is capable of converting retinaldehyde to retinoic acid.
     
 0.900
Tpmt
Thiopurine S-methyltransferase; Catalyzes the S-methylation of thiopurine drugs such as 6- mercaptopurine (also called mercaptopurine, 6-MP or its brand name Purinethol) using S-adenosyl-L-methionine as the methyl donor. TPMT activity modulates the cytotoxic effects of thiopurine prodrugs. A natural substrate for this enzyme has yet to be identified; Belongs to the class I-like SAM-binding methyltransferase superfamily. TPMT family.
      
 0.558
Your Current Organism:
Mus musculus
NCBI taxonomy Id: 10090
Other names: LK3 transgenic mice, M. musculus, Mus sp. 129SV, house mouse, mouse, nude mice, transgenic mice
Server load: low (20%) [HD]