STRINGSTRING
ppaC ppaC atpB atpB atpE atpE atpC atpC atpG atpG atpD atpD atpA atpA atpH atpH atpF atpF ppk ppk aldA-1 aldA-1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ppaCManganese-dependent inorganic pyrophosphatase; Identified by similarity to EGAD:14413; match to protein family HMM PF01368; match to protein family HMM PF02833. (309 aa)    
Predicted Functional Partners:
atpB
ATP synthase F0, A subunit; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane.
  
 
 0.919
atpE
ATP synthase F0, C subunit; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation.
  
 
 0.916
atpC
ATP synthase F1, epsilon subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane.
     
 0.907
atpG
ATP synthase F1, gamma subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex.
     
 0.907
atpD
ATP synthase F1, beta subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits; Belongs to the ATPase alpha/beta chains family.
     
 0.903
atpA
ATP synthase F1, alpha subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. Belongs to the ATPase alpha/beta chains family.
   
 
  0.902
atpH
ATP synthase F1, delta subunit; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation; Belongs to the ATPase delta chain family.
   
 
  0.902
atpF
ATP synthase F0, B subunit; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation.
     
 0.901
ppk
Polyphosphate kinase; Catalyzes the reversible transfer of the terminal phosphate of ATP to form a long-chain polyphosphate (polyP); Belongs to the polyphosphate kinase 1 (PPK1) family.
     
  0.900
aldA-1
Aldehyde dehydrogenase; Identified by similarity to EGAD:18867; match to protein family HMM PF00171; Belongs to the aldehyde dehydrogenase family.
  
    0.778
Your Current Organism:
Staphylococcus epidermidis
NCBI taxonomy Id: 176279
Other names: S. epidermidis RP62A, Staphylococcus epidermidis ATCC 35984, Staphylococcus epidermidis RP62A, Staphylococcus epidermidis str. RP62A, Staphylococcus epidermidis strain RP62A
Server load: low (20%) [HD]