STRINGSTRING
abnA abnA xsa xsa abfA abfA araA araA gmuG gmuG araM araM araP araP xynD xynD araE araE rhgW rhgW yesY yesY
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
abnAArabinan-endo 1,5-alpha-L-arabinase; Involved in the degradation of arabinan and is a key enzyme in the complete degradation of the plant cell wall. Catalyzes the internal cleavage of alpha-(1->5)-L-arabinofuranosyl residues of linear 1,5-alpha-L-arabinan and of branched sugar beet arabinan. It displays no activity against heavily substituted arabinans or a range of other polysaccharides (larch wood arabinogalactan, wheat arabinoxylan and p- nitrophenyl-alpha-L-arabinofuranoside). The enzyme activity is progressively reduced as alpha-(1->5)-chains become shorter or more highly substitu [...] (323 aa)    
Predicted Functional Partners:
xsa
alpha-L-arabinofuranosidase; Involved in the degradation of arabinan and is a key enzyme in the complete degradation of the plant cell wall. Catalyzes the cleavage of terminal alpha-L-arabinofuranosyl residues in different hemicellulosic homopolysaccharides (branched and debranched arabinans) and heteropolysaccharides (arabinoxylans). It is able to hydrolyze the alpha-(1->5)-glycosidic linkages of linear alpha-(1->5)-L-arabinan (debranched), sugar beet arabinan (branched) and wheat arabinoxylan. Moreover, it displays higher activity towards branched arabinan, a molecule comprising a ba [...]
 
  
 0.982
abfA
alpha-L-arabinofuranosidase; Involved in the degradation of arabinan and is a key enzyme in the complete degradation of the plant cell wall. Catalyzes the cleavage of terminal alpha-(1->5)-arabinofuranosyl bonds in different hemicellulosic homopolysaccharides (branched and debranched arabinans). It acts preferentially on arabinotriose, arabinobiose and linear alpha- (1->5)-L-arabinan, and is much less effective on branched sugar beet arabinan; Belongs to the glycosyl hydrolase 51 family.
 
  
 0.982
araA
L-arabinose isomerase; Catalyzes the conversion of L-arabinose to L-ribulose.
 
  
 0.855
gmuG
Exported mannan endo-1,4-beta-mannosidase; Involved in the degradation of glucomannan. Catalyzes the endo hydrolysis of beta-1,4-linked mannan, galactomannan and glucomannan; Belongs to the glycosyl hydrolase 26 family.
  
  
 0.853
araM
Glycerol-1-phosphate dehydrogenase [NAD(P)+]; Catalyzes the NAD(P)H-dependent reduction of dihydroxyacetonephosphate (DHAP or glycerone phosphate) to glycerol 1- phosphate (G1P). The G1P thus generated is probably used for the synthesis of phosphoglycerolipids in Gram-positive bacterial species. Prefers NADH over NADPH as coenzyme. Is also able to catalyze the reverse reaction, i.e. the NAD(+)-dependent oxidation of G1P but not of G3P. Does not possess glycerol dehydrogenase activity.
  
  
 0.853
araP
Arabinose/arabinan permease; Part of the binding-protein-dependent transport system for L- arabinose. Probably responsible for the translocation of the substrate across the membrane.
  
  
 0.843
xynD
Arabinoxylan arabinofuranohydrolase; Cleaves arabinose units from O-2- or O-3-monosubstituted xylose residues, thereby assisting in arabinoxylan (AX) and short-chain arabinoxylo-oligosaccharide (AXOS) degradation. Is more active on wheat bran AXOS than on wheat water-extractable AX and rye water-extractable AX. Does not display endoxylanase, xylosidase or arabinanase activity.
 
   
 0.817
araE
Arabinose-related compounds permease; Uptake of arabinose across the boundary membrane with the concomitant transport of protons into the cell (symport system).
  
  
 0.805
rhgW
Rhamnogalacturonan endolyase; Pectinolytic enzyme that degrades type I rhamnogalacturonan from plant cell walls and releases oligosaccharide products. Degrades rhamnogalacturonan, polygalacturonic acid, pectic acid and pectin ; Belongs to the polysaccharide lyase 11 family.
  
  
 0.792
yesY
Rhamnogalacturonan acetylesterase; May play a role in the degradation of rhamnogalacturonan derived from plant cell walls. Probably has broad substrate specificity and may degrade several types of acetylated substrates. Belongs to the 'GDSL' lipolytic enzyme family.
 
    0.791
Your Current Organism:
Bacillus subtilis 168
NCBI taxonomy Id: 224308
Other names: B. subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis 168, Bacillus subtilis subsp. subtilis str. 168, Bacillus subtilis subsp. subtilis str. BGSC 1A700
Server load: low (28%) [HD]