STRINGSTRING
pnpA pnpA rne rne nusA nusA infB infB rpoB-2 rpoB-2 rho rho rpoA rpoA rplC rplC pyrG pyrG rplD rplD rpsD rpsD
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
pnpAPolyribonucleotide nucleotidyltransferase (polynucleotide phosphorylase); Involved in mRNA degradation. Catalyzes the phosphorolysis of single-stranded polyribonucleotides processively in the 3'- to 5'- direction. (736 aa)    
Predicted Functional Partners:
rne
Ribonucleases G and E.
  
 
 0.938
nusA
Transcription elongation factor; Participates in both transcription termination and antitermination.
 
  
 0.898
infB
Translation initiation factor 2 (IF-2; One of the essential components for the initiation of protein synthesis. Protects formylmethionyl-tRNA from spontaneous hydrolysis and promotes its binding to the 30S ribosomal subunits. Also involved in the hydrolysis of GTP during the formation of the 70S ribosomal complex; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. IF-2 subfamily.
  
  
 0.896
rpoB-2
DNA-directed RNA polymerase, beta subunit/140 kD subunit; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.
   
  
 0.885
rho
Transcription termination factor; Facilitates transcription termination by a mechanism that involves Rho binding to the nascent RNA, activation of Rho's RNA- dependent ATPase activity, and release of the mRNA from the DNA template.
   
  
 0.880
rpoA
DNA-directed RNA polymerase, alpha subunit/40 kD subunit; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.
   
  
 0.879
rplC
50S ribosomal protein L3; One of the primary rRNA binding proteins, it binds directly near the 3'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit; Belongs to the universal ribosomal protein uL3 family.
   
  
 0.846
pyrG
CTP synthase (UTP-ammonia lyase); Catalyzes the ATP-dependent amination of UTP to CTP with either L-glutamine or ammonia as the source of nitrogen. Regulates intracellular CTP levels through interactions with the four ribonucleotide triphosphates.
  
  
 0.845
rplD
Ribosomal protein L4; One of the primary rRNA binding proteins, this protein initially binds near the 5'-end of the 23S rRNA. It is important during the early stages of 50S assembly. It makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit and ribosome.
   
    0.842
rpsD
Ribosomal protein S4; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the body of the 30S subunit.
   
  
 0.842
Your Current Organism:
Lawsonia intracellularis
NCBI taxonomy Id: 363253
Other names: L. intracellularis PHE/MN1-00, Lawsonia intracellularis PHE/MN1-00, Lawsonia intracellularis str. PHE/MN1-00, Lawsonia intracellularis strain PHE/MN1-00
Server load: low (20%) [HD]