STRINGSTRING
ACSS3 ACSS3 ACOX1 ACOX1 ECHDC1 ECHDC1 PCCA PCCA PCCB PCCB ACADS ACADS ACOX3 ACOX3 ALDH6A1 ALDH6A1 DBT DBT ACAA2 ACAA2 ACSS2 ACSS2
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ACSS3Acyl-CoA synthetase short-chain family member 3, mitochondrial; Catalyzes the synthesis of acetyl-CoA from short-chain fatty acids. Propionate is the preferred substrate. Can utilize acetate and butyrate with a much lower affinity (By similarity); Belongs to the ATP-dependent AMP-binding enzyme family. (686 aa)    
Predicted Functional Partners:
ACOX1
Peroxisomal acyl-CoA oxidase 1, A chain; Catalyzes the desaturation of acyl-CoAs to 2-trans-enoyl-CoAs. Isoform 1 shows highest activity against medium-chain fatty acyl-CoAs and activity decreases with increasing chain length. Isoform 2 is active against a much broader range of substrates and shows activity towards very long-chain acyl-CoAs. Isoform 2 is twice as active as isoform 1 against 16-hydroxy-palmitoyl-CoA and is 25% more active against 1,16-hexadecanodioyl-CoA.
  
 
 0.948
ECHDC1
Ethylmalonyl-CoA decarboxylase; Decarboxylates ethylmalonyl-CoA, a potentially toxic metabolite, to form butyryl-CoA, suggesting it might be involved in metabolite proofreading. Also has methylmalonyl-CoA decarboxylase activity at lower level (By similarity).
  
 
 0.946
PCCA
Propionyl-CoA carboxylase alpha chain, mitochondrial; This is one of the 2 subunits of the biotin-dependent propionyl-CoA carboxylase (PCC), a mitochondrial enzyme involved in the catabolism of odd chain fatty acids, branched-chain amino acids isoleucine, threonine, methionine, and valine and other metabolites. Propionyl-CoA carboxylase catalyzes the carboxylation of propionyl-CoA/propanoyl-CoA to D-methylmalonyl- CoA/(S)-methylmalonyl-CoA. Within the holoenzyme, the alpha subunit catalyzes the ATP-dependent carboxylation of the biotin carried by the biotin carboxyl carrier (BCC) domai [...]
  
 
 0.942
PCCB
Propionyl-CoA carboxylase beta chain, mitochondrial; This is one of the 2 subunits of the biotin-dependent propionyl-CoA carboxylase (PCC), a mitochondrial enzyme involved in the catabolism of odd chain fatty acids, branched-chain amino acids isoleucine, threonine, methionine, and valine and other metabolites. Propionyl-CoA carboxylase catalyzes the carboxylation of propionyl-CoA/propanoyl-CoA to D-methylmalonyl- CoA/(S)-methylmalonyl-CoA. Within the holoenzyme, the alpha subunit catalyzes the ATP-dependent carboxylation of the biotin carried by the biotin carboxyl carrier (BCC) domain [...]
  
 
 0.942
ACADS
Short-chain specific acyl-CoA dehydrogenase, mitochondrial; Short-chain specific acyl-CoA dehydrogenase is one of the acyl-CoA dehydrogenases that catalyze the first step of mitochondrial fatty acid beta-oxidation, an aerobic process breaking down fatty acids into acetyl-CoA and allowing the production of energy from fats (By similarity). The first step of fatty acid beta-oxidation consists in the removal of one hydrogen from C-2 and C-3 of the straight-chain fatty acyl-CoA thioester, resulting in the formation of trans-2-enoyl- CoA (By similarity). Among the different mitochondrial ac [...]
  
 
 0.941
ACOX3
Peroxisomal acyl-coenzyme A oxidase 3; Oxidizes the CoA-esters of 2-methyl-branched fatty acids. Belongs to the acyl-CoA oxidase family.
  
 
 0.936
ALDH6A1
Methylmalonate-semialdehyde dehydrogenase [acylating], mitochondrial; Plays a role in valine and pyrimidine metabolism. Binds fatty acyl-CoA; Belongs to the aldehyde dehydrogenase family.
   
 
 0.931
DBT
2-oxoisovalerate dehydrogenase E2 component (dihydrolipoyl transacylase); The branched-chain alpha-keto dehydrogenase complex catalyzes the overall conversion of alpha-keto acids to acyl-CoA and CO(2). It contains multiple copies of three enzymatic components: branched-chain alpha-keto acid decarboxylase (E1), lipoamide acyltransferase (E2) and lipoamide dehydrogenase (E3). Within this complex, the catalytic function of this enzyme is to accept, and to transfer to coenzyme A, acyl groups that are generated by the branched-chain alpha-keto acid decarboxylase component.
  
 
 0.929
ACAA2
3-ketoacyl-CoA thiolase, mitochondrial; In the production of energy from fats, this is one of the enzymes that catalyzes the last step of the mitochondrial beta- oxidation pathway, an aerobic process breaking down fatty acids into acetyl-CoA (Probable). Using free coenzyme A/CoA, catalyzes the thiolytic cleavage of medium- to long-chain unbranched 3-oxoacyl-CoAs into acetyl-CoA and a fatty acyl-CoA shortened by two carbon atoms (Probable). Also catalyzes the condensation of two acetyl-CoA molecules into acetoacetyl-CoA and could be involved in the production of ketone bodies (Probable) [...]
  
 
 0.927
ACSS2
Acetyl-coenzyme A synthetase, cytoplasmic; Catalyzes the synthesis of acetyl-CoA from short-chain fatty acids. Acetate is the preferred substrate. Can also utilize propionate with a much lower affinity (By similarity). Belongs to the ATP-dependent AMP-binding enzyme family.
  
 
0.921
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, human, man
Server load: low (18%) [HD]