STRINGSTRING
ALDH1A1 ALDH1A1 RDH10 RDH10 CYP26A1 CYP26A1 DHRS4 DHRS4 ADH5 ADH5 CYP26C1 CYP26C1 ADH4 ADH4 CYP26B1 CYP26B1 RDH5 RDH5 AOX1 AOX1 DHRS9 DHRS9
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ALDH1A1Retinal dehydrogenase 1; Can convert/oxidize retinaldehyde to retinoic acid. Binds free retinal and cellular retinol-binding protein-bound retinal. May have a broader specificity and oxidize other aldehydes in vivo. (501 aa)    
Predicted Functional Partners:
RDH10
Retinol dehydrogenase 10; Retinol dehydrogenase with a clear preference for NADP. Converts all-trans-retinol to all-trans-retinal. Has no detectable activity towards 11-cis-retinol, 9-cis-retinol and 13-cis-retinol (By similarity).
  
 0.976
CYP26A1
Uncharacterized protein; Belongs to the cytochrome P450 family.
   
 
 0.973
DHRS4
Dehydrogenase/reductase SDR family member 4; Reduces all-trans-retinal and 9-cis retinal. Can also catalyze the oxidation of all-trans-retinol with NADP as co-factor, but with much lower efficiency. Reduces alkyl phenyl ketones and alpha- dicarbonyl compounds with aromatic rings, such as pyrimidine-4- aldehyde, 3-benzoylpyridine, 4-benzoylpyridine, menadione and 4- hexanoylpyridine. Has no activity towards aliphatic aldehydes and ketones (By similarity).
  
 0.968
ADH5
Alcohol dehydrogenase class-3; Catalyzes the oxidation of long-chain primary alcohols and the oxidation of S-(hydroxymethyl) glutathione. Also oxidizes long chain omega-hydroxy fatty acids, such as 20-HETE, producing both the intermediate aldehyde, 20-oxoarachidonate and the end product, a dicarboxylic acid, (5Z,8Z,11Z,14Z)-eicosatetraenedioate. Class-III ADH is remarkably ineffective in oxidizing ethanol. Belongs to the zinc-containing alcohol dehydrogenase family. Class-III subfamily.
 
 0.965
CYP26C1
Cytochrome P450 family 26 subfamily C member 1; Belongs to the cytochrome P450 family.
     
 0.963
ADH4
PKS_ER domain-containing protein.
 
 0.959
CYP26B1
Cytochrome P450 26B1; Involved in the metabolism of retinoic acid (RA), rendering this classical morphogen inactive through oxidation. Involved in the specific inactivation of all-trans-retinoic acid (all-trans-RA), with a preference for the following substrates: all-trans-RA > 9-cis-RA > 13- cis-RA. Generates several hydroxylated forms of RA, including 4-OH-RA, 4-oxo-RA, and 18-OH-RA. Essential for postnatal survival. Plays a central role in germ cell development: acts by degrading RA in the developing testis, preventing STRA8 expression, thereby leading to delay of meiosis. Required [...]
   
 
 0.959
RDH5
Retinol dehydrogenase 5; Catalyzes the oxidation of cis-isomers of retinol, including 11-cis-, 9-cis-, and 13-cis-retinol in an NAD-dependent manner. Has no activity towards all-trans retinal. Plays a significant role in 11-cis retinol oxidation in the retinal pigment epithelium cells (RPE) (By similarity). Also recognizes steroids (androsterone, androstanediol) as its substrates (By similarity). Belongs to the short-chain dehydrogenases/reductases (SDR) family.
   
 
 0.951
AOX1
Aldehyde oxidase 1; Oxidase with broad substrate specificity, oxidizing aromatic azaheterocycles, such as N1-methylnicotinamide, N-methylphthalazinium and phthalazine, as well as aldehydes, such as benzaldehyde, retinal, pyridoxal, and vanillin. Plays a key role in the metabolism of xenobiotics and drugs containing aromatic azaheterocyclic substituents. Is probably involved in the regulation of reactive oxygen species homeostasis. May be a prominent source of superoxide generation via the one-electron reduction of molecular oxygen. Also may catalyze nitric oxide (NO) production via the [...]
   
 
 0.949
DHRS9
Dehydrogenase/reductase SDR family member 9; 3-alpha-hydroxysteroid dehydrogenase that converts 3-alpha- tetrahydroprogesterone (allopregnanolone) to dihydroxyprogesterone and 3-alpha-androstanediol to dihydroxyprogesterone. Plays also a role in the biosynthesis of retinoic acid from retinaldehyde. Can utilize both NADH and NADPH.
   
 
 0.948
Your Current Organism:
Bos taurus
NCBI taxonomy Id: 9913
Other names: B. taurus, Bos bovis, Bos primigenius taurus, Bovidae sp. Adi Nefas, bovine, cattle, cow, dairy cow, domestic cattle, domestic cow
Server load: low (26%) [HD]