STRINGSTRING
pgi pgi tpiA tpiA pfkA pfkA gapA gapA eno eno pgm pgm zwf zwf fba fba pgk pgk talB talB fbp fbp
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
pgiSimilar to E. coli glucosephosphate isomerase (AAC76995.1); Blastp hit to AAC76995.1 (549 aa), 95% identity in aa 1 - 548. (549 aa)    
Predicted Functional Partners:
tpiA
Triosephosphate isomerase; Involved in the gluconeogenesis. Catalyzes stereospecifically the conversion of dihydroxyacetone phosphate (DHAP) to D- glyceraldehyde-3-phosphate (G3P); Belongs to the triosephosphate isomerase family.
  
 0.998
pfkA
6-phosphofructokinase I; Catalyzes the phosphorylation of D-fructose 6-phosphate to fructose 1,6-bisphosphate by ATP, the first committing step of glycolysis.
  
 0.996
gapA
Glyceraldehyde-3-phosphate dehydrogenase A; Catalyzes the oxidative phosphorylation of glyceraldehyde 3- phosphate (G3P) to 1,3-bisphosphoglycerate (BPG) using the cofactor NAD. The first reaction step involves the formation of a hemiacetal intermediate between G3P and a cysteine residue, and this hemiacetal intermediate is then oxidized to a thioester, with concomitant reduction of NAD to NADH. The reduced NADH is then exchanged with the second NAD, and the thioester is attacked by a nucleophilic inorganic phosphate to produce BPG.
 
 
 0.995
eno
Enolase; Catalyzes the reversible conversion of 2-phosphoglycerate into phosphoenolpyruvate. It is essential for the degradation of carbohydrates via glycolysis.
  
 0.994
pgm
Phosphoglucomutase; Similar to E. coli phosphoglucomutase (AAC73782.1); Blastp hit to AAC73782.1 (546 aa), 97% identity in aa 1 - 546.
 
 0.992
zwf
Glucose-6-phosphate dehydrogenase; Catalyzes the oxidation of glucose 6-phosphate to 6- phosphogluconolactone.
  
 
 0.992
fba
Fructose-bisphosphate aldolase; Catalyzes the aldol condensation of dihydroxyacetone phosphate (DHAP or glycerone-phosphate) with glyceraldehyde 3-phosphate (G3P) to form fructose 1,6-bisphosphate (FBP) in gluconeogenesis and the reverse reaction in glycolysis; Belongs to the class II fructose-bisphosphate aldolase family.
  
 
 0.988
pgk
Similar to E. coli phosphoglycerate kinase (AAC75963.1); Blastp hit to AAC75963.1 (387 aa), 97% identity in aa 1 - 387.
 
 
 0.987
talB
Transaldolase B; Transaldolase is important for the balance of metabolites in the pentose-phosphate pathway.
  
 
 0.979
fbp
Similar to E. coli fructose-bisphosphatase (AAC77189.1); Blastp hit to AAC77189.1 (332 aa), 97% identity in aa 1 - 332.
   
 
 0.978
Your Current Organism:
Salmonella enterica Typhimurium
NCBI taxonomy Id: 99287
Other names: S. enterica subsp. enterica serovar Typhimurium str. LT2, Salmonella enterica subsp. enterica serovar Typhimurium LT2, Salmonella enterica subsp. enterica serovar Typhimurium str. LT2, Salmonella enterica subsp. enterica serovar Typhimurium strain LT2, Salmonella enterica subsp. enterica serovar Typhimurium strain LT2-LTL2, Salmonella typhimurium LT2
Server load: low (18%) [HD]