Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
BARD1 BARD1 ALYREF ALYREF SNRPA1 SNRPA1 NHP2L1 NHP2L1 CPSF2 CPSF2 CSTF1 CSTF1 HNRNPL HNRNPL SNRPB2 SNRPB2 POLR2J POLR2J CSTF2 CSTF2 SNRPD3 SNRPD3 HNRNPH1 HNRNPH1 SF3A2 SF3A2 SNRNP40 SNRNP40 CPSF7 CPSF7 POLR2E POLR2E POLR2C POLR2C DHX9 DHX9 DDX23 DDX23 PRPF6 PRPF6 POLR2K POLR2K CDC40 CDC40 POLR2D POLR2D U2AF1 U2AF1 PHF5A PHF5A SF3A3 SF3A3
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
POLR2Epolymerase (RNA) II (DNA directed) polypeptide E, 25kDa; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Common component of RNA polymerases I, II and III which synthesize ribosomal RNA precursors, mRNA precursors and many functional non-coding RNAs, and small RNAs, such as 5S rRNA and tRNAs, respectively. Pol II is the central component of the basal RNA polymerase II transcription machinery. Pols are composed of mobile elements that move relative to each other. In Pol II, POLR2E/RPB5 is part of the low [...] (210 aa)
SNRPD3small nuclear ribonucleoprotein D3 polypeptide 18kDa; Appears to function in the U7 snRNP complex that is involved in histone 3’-end processing. Binds to the downstream cleavage product (DCP) of histone pre-mRNA in a U7 snRNP dependent manner (126 aa)
NHP2L1NHP2 non-histone chromosome protein 2-like 1 (S. cerevisiae); Binds to the 5’-stem-loop of U4 snRNA and may play a role in the late stage of spliceosome assembly. The protein undergoes a conformational change upon RNA-binding (128 aa)
PHF5APHD finger protein 5A; Acts as a transcriptional regulator by binding to the GJA1/Cx43 promoter and enhancing its up-regulation by ESR1/ER- alpha. Also involved in pre-mRNA splicing (110 aa)
CSTF1cleavage stimulation factor, 3’ pre-RNA, subunit 1, 50kDa; One of the multiple factors required for polyadenylation and 3’-end cleavage of mammalian pre-mRNAs. May be responsible for the interaction of CSTF with other factors to form a stable complex on the pre-mRNA (431 aa)
POLR2Cpolymerase (RNA) II (DNA directed) polypeptide C, 33kDa; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase II which synthesizes mRNA precursors and many functional non-coding RNAs. Pol II is the central component of the basal RNA polymerase II transcription machinery. It is composed of mobile elements that move relative to each other. RPB3 is part of the core element with the central large cleft and the clamp element that moves to open and close the cleft (By similarity) (275 aa)
HNRNPLheterogeneous nuclear ribonucleoprotein L; This protein is a component of the heterogeneous nuclear ribonucleoprotein (hnRNP) complexes which provide the substrate for the processing events that pre-mRNAs undergo before becoming functional, translatable mRNAs in the cytoplasm. Is associated with most nascent transcripts including those of the landmark giant loops of amphibian lampbrush chromosomes. Associates, together with APEX1, to the negative calcium responsive element (nCaRE) B2 of the APEX2 promoter (589 aa)
SF3A2splicing factor 3a, subunit 2, 66kDa; Subunit of the splicing factor SF3A required for ’A’ complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence (BPS) in pre-mRNA. Sequence independent binding of SF3A/SF3B complex upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA. May also be involved in the assembly of the ’E’ complex (464 aa)
SNRPB2small nuclear ribonucleoprotein polypeptide B; Involved in pre-mRNA splicing. This protein is associated with snRNP U2. It binds stem loop IV of U2 snRNA only in presence of the U2A’ protein (225 aa)
SNRPA1small nuclear ribonucleoprotein polypeptide A’; This protein is associated with sn-RNP U2. It helps the A’ protein to bind stem loop IV of U2 snRNA (255 aa)
BARD1BRCA1 associated RING domain 1; Probable E3 ubiquitin-protein ligase. The BRCA1-BARD1 heterodimer specifically mediates the formation of ’Lys-6’-linked polyubiquitin chains and coordinates a diverse range of cellular pathways such as DNA damage repair, ubiquitination and transcriptional regulation to maintain genomic stability. Plays a central role in the control of the cell cycle in response to DNA damage. Acts by mediating ubiquitin E3 ligase activity that is required for its tumor suppressor function. Also forms a heterodimer with CSTF1/CSTF-50 to modulate mRNA processing and RNAP I [...] (777 aa)
SNRNP40small nuclear ribonucleoprotein 40kDa (U5); Component of the U5 small nuclear ribonucleoprotein (snRNP) complex. The U5 snRNP is part of the spliceosome, a multiprotein complex that catalyzes the removal of introns from pre-messenger RNAs (357 aa)
PRPF6PRP6 pre-mRNA processing factor 6 homolog (S. cerevisiae) (941 aa)
POLR2Dpolymerase (RNA) II (DNA directed) polypeptide D; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase II which synthesizes mRNA precursors and many functional non-coding RNAs. Pol II is the central component of the basal RNA polymerase II transcription machinery. It is composed of mobile elements that move relative to each other. RPB4 is part of a subcomplex with RPB7 that binds to a pocket formed by RPB1, RPB2 and RPB6 at the base of the clamp element. The RBP4-RPB7 subcomplex s [...] (142 aa)
U2AF1U2 small nuclear RNA auxiliary factor 1; Plays a critical role in both constitutive and enhancer- dependent splicing by mediating protein-protein interactions and protein-RNA interactions required for accurate 3’-splice site selection. Recruits U2 snRNP to the branch point. Directly mediates interactions between U2AF2 and proteins bound to the enhancers and thus may function as a bridge between U2AF2 and the enhancer complex to recruit it to the adjacent intron (240 aa)
POLR2Jpolymerase (RNA) II (DNA directed) polypeptide J, 13.3kDa; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase II which synthesizes mRNA precursors and many functional non-coding RNAs. Pol II is the central component of the basal RNA polymerase II transcription machinery. It is composed of mobile elements that move relative to each other. RPB11 is part of the core element with the central large cleft (By similarity) (117 aa)
CPSF2cleavage and polyadenylation specific factor 2, 100kDa; Component of the cleavage and polyadenylation specificity factor (CPSF) complex that play a key role in pre-mRNA 3’-end formation, recognizing the AAUAAA signal sequence and interacting with poly(A) polymerase and other factors to bring about cleavage and poly(A) addition. Involved in the histone 3’ end pre-mRNA processing (782 aa)
CDC40cell division cycle 40 homolog (S. cerevisiae); Associates with the spliceosome late in the splicing pathway and may function in the second step of pre-mRNA splicing (579 aa)
DDX23DEAD (Asp-Glu-Ala-Asp) box polypeptide 23; Involved in pre-mRNA splicing and its phosphorylated form (by SRPK2) is required for spliceosomal B complex formation (820 aa)
POLR2Kpolymerase (RNA) II (DNA directed) polypeptide K, 7.0kDa; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Common component of RNA polymerases I, II and III which synthesize ribosomal RNA precursors, mRNA precursors and many functional non-coding RNAs, and a small RNAs, such as 5S rRNA and tRNAs, respectively (58 aa)
CPSF7cleavage and polyadenylation specific factor 7, 59kDa; Component of the cleavage factor Im complex (CFIm) that plays a key role in pre-mRNA 3’ processing. Binds to cleavage and polyadenylation RNA substrates (514 aa)
HNRNPH1heterogeneous nuclear ribonucleoprotein H1 (H); This protein is a component of the heterogeneous nuclear ribonucleoprotein (hnRNP) complexes which provide the substrate for the processing events that pre-mRNAs undergo before becoming functional, translatable mRNAs in the cytoplasm. Mediates pre-mRNA alternative splicing regulation. Inhibits, together with CUGBP1, insulin receptor (IR) pre-mRNA exon 11 inclusion in myoblast. Binds to the IR RNA. Binds poly(RG) (449 aa)
DHX9DEAH (Asp-Glu-Ala-His) box polypeptide 9; Unwinds double-stranded DNA and RNA in a 3’ to 5’ direction. Alteration of secondary structure may subsequently influence interactions with proteins or other nucleic acids. Functions as a transcriptional activator. Component of the CRD- mediated complex that promotes MYC mRNA stability. Involved with LARP6 in the stabilization of type I collagen mRNAs for CO1A1 and CO1A2. Positively regulates HIV-1 LTR-directed gene expression (1270 aa)
CSTF2cleavage stimulation factor, 3’ pre-RNA, subunit 2, 64kDa; One of the multiple factors required for polyadenylation and 3’-end cleavage of mammalian pre-mRNAs. This subunit is directly involved in the binding to pre-mRNAs (By similarity) (577 aa)
SF3A3splicing factor 3a, subunit 3, 60kDa; Subunit of the splicing factor SF3A required for ’A’ complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence (BPS) in pre-mRNA. Sequence independent binding of SF3A/SF3B complex upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA. May also be involved in the assembly of the ’E’ complex (501 aa)
ALYREFAly/REF export factor; Component of the THO subcomplex of the TREX complex. The TREX complex specifically associates with spliced mRNA and not with unspliced pre-mRNA. It is recruited to spliced mRNAs by a transcription-independent mechanism. Binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region near the 5’ end of the mRNA where it functions in mRNA export. The recruitment occurs via an interaction between ALYREF/THOC4 and the cap-binding protein NCBP1. DDX39B functions as a bridge between ALYREF/THOC4 and the THO [...] (264 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: medium (46%)