Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
LTA4H LTA4H PLA2G1B PLA2G1B PLA2G2A PLA2G2A PLA2G6 PLA2G6 PLA2G4C PLA2G4C PLA2G4A PLA2G4A CYP4F3 CYP4F3 PLA2G16 PLA2G16 CYP4F2 CYP4F2 CYP2C19 CYP2C19 PTGS2 PTGS2 PLA2G2F PLA2G2F ALOX15 ALOX15 ALOX15B ALOX15B CYP4A11 CYP4A11 PLA2G12B PLA2G12B PLA2G4E PLA2G4E CYP2C8 CYP2C8 PTGS1 PTGS1 CYP2U1 CYP2U1 CYP2C9 CYP2C9 CYP2E1 CYP2E1 PLA2G5 PLA2G5 PLA2G2C PLA2G2C PLA2G4F PLA2G4F PLA2G4B PLA2G4B
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
CYP4F3cytochrome P450, family 4, subfamily F, polypeptide 3; Cytochromes P450 are a group of heme-thiolate monooxygenases. This enzyme requires molecular oxygen and NADPH for the omega-hydroxylation of LTB4, a potent chemoattractant for polymorphonuclear leukocytes (520 aa)
CYP4F2cytochrome P450, family 4, subfamily F, polypeptide 2; Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics (520 aa)
LTA4Hleukotriene A4 hydrolase; Epoxide hydrolase that catalyzes the final step in the biosynthesis of the proinflammatory mediator leukotriene B4. Has also aminopeptidase activity (611 aa)
PLA2G2Cphospholipase A2, group IIC; Inactive phospholipase (Probable) (150 aa)
CYP2E1cytochrome P450, family 2, subfamily E, polypeptide 1; Metabolizes several precarcinogens, drugs, and solvents to reactive metabolites. Inactivates a number of drugs and xenobiotics and also bioactivates many xenobiotic substrates to their hepatotoxic or carcinogenic forms (493 aa)
CYP2C9cytochrome P450, family 2, subfamily C, polypeptide 9; Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. This enzyme contributes to the wide pharmacokinetics variability of the metabolism of drugs such as S- warfarin, diclofenac, phenytoin, tolbutamide and losartan (490 aa)
ALOX15arachidonate 15-lipoxygenase; Converts arachidonic acid to 15S- hydroperoxyeicosatetraenoic acid. Also acts on C-12 of arachidonate as well as on linoleic acid (662 aa)
CYP4A11cytochrome P450, family 4, subfamily A, polypeptide 11; Catalyzes the omega- and (omega-1)-hydroxylation of various fatty acids such as laurate, myristate and palmitate. Has little activity toward prostaglandins A1 and E1. Oxidizes arachidonic acid to 20-hydroxyeicosatetraenoic acid (20-HETE) (519 aa)
PLA2G1Bphospholipase A2, group IB (pancreas); PA2 catalyzes the calcium-dependent hydrolysis of the 2- acyl groups in 3-sn-phosphoglycerides, this releases glycerophospholipids and arachidonic acid that serve as the precursors of signal molecules (148 aa)
PLA2G16phospholipase A2, group XVI; Exhibits PLA1/2 activity, catalyzing the calcium- independent hydrolysis of acyl groups in various phosphatidylcholines (PC) and phosphatidylethanolamine (PE). For most substrates, PLA1 activity is much higher than PLA2 activity. Specifically catalyzes the release of fatty acids from phospholipids in adipose tissue (By similarity). N- and O- acylation activity is hardly detectable. Might decrease protein phosphatase 2A (PP2A) activity (162 aa)
PLA2G6phospholipase A2, group VI (cytosolic, calcium-independent); Catalyzes the release of fatty acids from phospholipids. It has been implicated in normal phospholipid remodeling, nitric oxide-induced or vasopressin-induced arachidonic acid release and in leukotriene and prostaglandin production. May participate in fas mediated apoptosis and in regulating transmembrane ion flux in glucose-stimulated B-cells. Has a role in cardiolipin (CL) deacylation. Required for both speed and directionality of monocyte MCP1/CCL2-induced chemotaxis through regulation of F- actin polymerization at the pse [...] (806 aa)
CYP2U1cytochrome P450, family 2, subfamily U, polypeptide 1; Catalyzes the hydroxylation of arachidonic acid, docosahexaenoic acid and other long chain fatty acids. May modulate the arachidonic acid signaling pathway and play a role in other fatty acid signaling processes (544 aa)
PTGS1prostaglandin-endoperoxide synthase 1 (prostaglandin G/H synthase and cyclooxygenase); May play an important role in regulating or promoting cell proliferation in some normal and neoplastically transformed cells (599 aa)
PLA2G4Aphospholipase A2, group IVA (cytosolic, calcium-dependent); Selectively hydrolyzes arachidonyl phospholipids in the sn-2 position releasing arachidonic acid. Together with its lysophospholipid activity, it is implicated in the initiation of the inflammatory response (749 aa)
PTGS2prostaglandin-endoperoxide synthase 2 (prostaglandin G/H synthase and cyclooxygenase); Mediates the formation of prostaglandins from arachidonate. May have a role as a major mediator of inflammation and/or a role for prostanoid signaling in activity-dependent plasticity (604 aa)
CYP2C8cytochrome P450, family 2, subfamily C, polypeptide 8; Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. In the epoxidation of arachidonic acid it generates only 14,15- and 11,12-cis-epoxyeicosatrienoic acids. It is the principal enzyme responsible for the metabolism the anti- cancer drug paclitaxel (taxol) (490 aa)
CYP2C19cytochrome P450, family 2, subfamily C, polypeptide 19; Responsible for the metabolism of a number of therapeutic agents such as the anticonvulsant drug S-mephenytoin, omeprazole, proguanil, certain barbiturates, diazepam, propranolol, citalopram and imipramine (490 aa)
PLA2G12Bphospholipase A2, group XIIB; Not known; does not seem to have catalytic activity (195 aa)
PLA2G2Fphospholipase A2, group IIF; PA2 catalyzes the calcium-dependent hydrolysis of the 2- acyl groups in 3-sn-phosphoglycerides. Hydrolyzes phosphatidylglycerol versus phosphatidylcholine with a 15-fold preference (211 aa)
PLA2G5phospholipase A2, group V; PA2 catalyzes the calcium-dependent hydrolysis of the 2- acyl groups in 3-sn-phosphoglycerides. This isozyme hydrolyzes more efficiently L-alpha-1-palmitoyl-2-oleoyl phosphatidylcholine than L-alpha-1-palmitoyl-2-arachidonyl phosphatidylcholine, L- alpha-1-palmitoyl-2-arachidonyl phosphatidylethanolamine, or L- alpha-1-stearoyl-2-arachidonyl phosphatidylinositol. May be involved in the production of lung surfactant, the remodeling or regulation of cardiac muscle (138 aa)
PLA2G2Aphospholipase A2, group IIA (platelets, synovial fluid); Thought to participate in the regulation of the phospholipid metabolism in biomembranes including eicosanoid biosynthesis. Catalyzes the calcium-dependent hydrolysis of the 2- acyl groups in 3-sn-phosphoglycerides (144 aa)
ALOX15Barachidonate 15-lipoxygenase, type B; Converts arachidonic acid exclusively to 15S- hydroperoxyeicosatetraenoic acid, while linoleic acid is less well metabolized (676 aa)
PLA2G4Fphospholipase A2, group IVF; Calcium-dependent phospholipase A2 that selectively hydrolyzes glycerophospholipids in the sn-2 position. Has higher enzyme activity for phosphatidylethanolamine than phosphatidylcholine (By similarity) (849 aa)
PLA2G4Ephospholipase A2, group IVE; Calcium-dependent phospholipase A2 that selectively hydrolyzes glycerophospholipids in the sn-2 position (By similarity) (868 aa)
PLA2G4Bphospholipase A2, group IVB (cytosolic); Calcium-dependent phospholipase A2 that selectively hydrolyzes glycerophospholipids in the sn-2 position with a preference for arachidonoyl phospholipids. Has a much weaker activity than PLA2G4A. Isoform 3 has calcium-dependent activity against palmitoyl-arachidonyl-phosphatidylethanolamine and low level lysophospholipase activity but no activity against phosphatidylcholine. Isoform 5 does have activity against phosphatidylcholine (781 aa)
PLA2G4Cphospholipase A2, group IVC (cytosolic, calcium-independent); Has a preference for arachidonic acid at the sn-2 position of phosphatidylcholine as compared with palmitic acid (541 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: low (36%)