Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
PDE7A PDE7A AK1 AK1 PDE10A PDE10A AMPD3 AMPD3 PDE1A PDE1A AMPD1 AMPD1 PDE1C PDE1C NUDT16 NUDT16 ENTPD3 ENTPD3 CMPK2 CMPK2 ITPA ITPA GMPR2 GMPR2 ENTPD6 ENTPD6 APRT APRT CDA CDA UPRT UPRT NT5C1A NT5C1A PDE6C PDE6C UPP2 UPP2 GMPS GMPS PDE6B PDE6B ADA ADA NAPRT1 NAPRT1 QPRT QPRT NAMPTL NAMPTL NMNAT1 NMNAT1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
NT5C1A5’-nucleotidase, cytosolic IA; Dephosphorylates the 5’ and 2’(3’)-phosphates of deoxyribonucleotides and has a broad substrate specificity. Helps to regulate adenosine levels in heart during ischemia and hypoxia (368 aa)
CMPK2cytidine monophosphate (UMP-CMP) kinase 2, mitochondrial; May participate in dUTP and dCTP synthesis in mitochondria. Is able to phosphorylate dUMP, dCMP, CMP, UMP and monophosphates of the pyrimidine nucleoside analogs ddC, dFdC, araC, BVDU and FdUrd with ATP as phosphate donor. Efficacy is highest for dUMP followed by dCMP; CMP and UMP are poor substrates. May be involved in mtDNA depletion caused by long term treatment with ddC or other pyrimidine analogs (449 aa)
ENTPD3ectonucleoside triphosphate diphosphohydrolase 3; Has a threefold preference for the hydrolysis of ATP over ADP (529 aa)
PDE1Aphosphodiesterase 1A, calmodulin-dependent (545 aa)
PDE6Cphosphodiesterase 6C, cGMP-specific, cone, alpha prime (858 aa)
ADAadenosine deaminase; Catalyzes the hydrolytic deamination of adenosine and 2- deoxyadenosine. Plays an important role in purine metabolism and in adenosine homeostasis. Modulates signaling by extracellular adenosine, and so contributes indirectly to cellular signaling events. Acts as a positive regulator of T-cell coactivation, by binding DPP4. Its interaction with DPP4 regulates lymphocyte- epithelial cell adhesion (363 aa)
AK1adenylate kinase 1; Catalyzes the reversible transfer of the terminal phosphate group between ATP and AMP. Plays an important role in cellular energy homeostasis and in adenine nucleotide metabolism (194 aa)
UPRTuracil phosphoribosyltransferase (FUR1) homolog (S. cerevisiae) (309 aa)
CDAcytidine deaminase; This enzyme scavenge exogenous and endogenous cytidine and 2’-deoxycytidine for UMP synthesis (146 aa)
ENTPD6ectonucleoside triphosphate diphosphohydrolase 6 (putative); Might support glycosylation reactions in the Golgi apparatus and, when released from cells, might catalyze the hydrolysis of extracellular nucleotides. Hydrolyzes preferentially nucleoside 5’-diphosphates, nucleoside 5’-triphosphates are hydrolyzed only to a minor extent, there is no hydrolysis of nucleoside 5’-monophosphates. The order of activity with different substrates is GDP > IDP >> UDP = CDP >> ADP (By similarity) (484 aa)
NMNAT1nicotinamide nucleotide adenylyltransferase 1; Catalyzes the formation of NAD(+) from nicotinamide mononucleotide (NMN) and ATP. Can also use the deamidated form; nicotinic acid mononucleotide (NaMN) as substrate with the same efficiency. Can use triazofurin monophosphate (TrMP) as substrate. Also catalyzes the reverse reaction, i.e. the pyrophosphorolytic cleavage of NAD(+). For the pyrophosphorolytic activity, prefers NAD(+) and NAAD as substrates and degrades NADH, nicotinic acid adenine dinucleotide phosphate (NHD) and nicotinamide guanine dinucleotide (NGD) less effectively. Fails [...] (279 aa)
APRTadenine phosphoribosyltransferase; Catalyzes a salvage reaction resulting in the formation of AMP, that is energically less costly than de novo synthesis (180 aa)
ITPAinosine triphosphatase (nucleoside triphosphate pyrophosphatase) (194 aa)
QPRTquinolinate phosphoribosyltransferase; Involved in the catabolism of quinolinic acid (QA) (297 aa)
PDE1Cphosphodiesterase 1C, calmodulin-dependent 70kDa; Cyclic nucleotide phosphodiesterase with a dual- specificity for the second messengers cAMP and cGMP, which are key regulators of many important physiological processes. Has a high affinity for both cAMP and cGMP (769 aa)
AMPD3adenosine monophosphate deaminase 3; AMP deaminase plays a critical role in energy metabolism (776 aa)
PDE7Aphosphodiesterase 7A; Hydrolyzes the second messenger cAMP, which is a key regulator of many important physiological processes. May have a role in muscle signal transduction (482 aa)
UPP2uridine phosphorylase 2; Catalyzes the reversible phosphorylytic cleavage of uridine and deoxyuridine to uracil and ribose- or deoxyribose-1- phosphate. The produced molecules are then utilized as carbon and energy sources or in the rescue of pyrimidine bases for nucleotide synthesis. Shows substrate specificity and accept uridine, deoxyuridine, and thymidine as well as the two pyrimidine nucleoside analogs 5-fluorouridine and 5-fluoro-2(’)-deoxyuridine as substrates (374 aa)
GMPR2guanosine monophosphate reductase 2; Catalyzes the irreversible NADPH-dependent deamination of GMP to IMP. It functions in the conversion of nucleobase, nucleoside and nucleotide derivatives of G to A nucleotides, and in maintaining the intracellular balance of A and G nucleotides. Plays a role in modulating cellular differentiation (366 aa)
NAPRT1nicotinate phosphoribosyltransferase domain containing 1; Catalyzes the conversion of nicotinic acid (NA) to NA mononucleotide (NaMN). Essential for NA to increase cellular NAD levels and prevent oxidative stress of the cells (538 aa)
NAMPTLnicotinamide phosphoribosyltransferase-like (472 aa)
GMPSguanine monphosphate synthetase; Involved in the de novo synthesis of guanine nucleotides which are not only essential for DNA and RNA synthesis, but also provide GTP, which is involved in a number of cellular processes important for cell division (693 aa)
PDE6Bphosphodiesterase 6B, cGMP-specific, rod, beta; This protein participates in processes of transmission and amplification of the visual signal. Necessary for the formation of a functional phosphodiesterase holoenzyme (854 aa)
NUDT16nudix (nucleoside diphosphate linked moiety X)-type motif 16; RNA-binding and decapping enzyme that catalyzes the cleavage of the cap structure of snoRNAs and mRNAs in a metal- dependent manner. Part of the U8 snoRNP complex that is required for the accumulation of mature 5.8S and 28S rRNA. Has diphosphatase activity and removes m7G and/or m227G caps from U8 snoRNA and leaves a 5’monophosphate on the RNA. Catalyzes also the cleavage of the cap structure on mRNAs. Does not hydrolyze cap analog structures like 7-methylguanosine nucleoside triphosphate (m7GpppG). Also hydrolysis m7G- and [...] (227 aa)
AMPD1adenosine monophosphate deaminase 1; AMP deaminase plays a critical role in energy metabolism (780 aa)
PDE10Aphosphodiesterase 10A; Plays a role in signal transduction by regulating the intracellular concentration of cyclic nucleotides. Can hydrolyze both cAMP and cGMP, but has higher affinity for cAMP and is more efficient with cAMP as substrate (789 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: medium (44%)