Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
FTCD FTCD AMT AMT ENTPD6 ENTPD6 ENTPD4 ENTPD4 ADSSL1 ADSSL1 DHFRL1 DHFRL1 SHMT2 SHMT2 GMPR GMPR ADSS ADSS ENTPD5 ENTPD5 ATIC ATIC SHMT1 SHMT1 HPRT1 HPRT1 NT5C1A NT5C1A MTR MTR NT5E NT5E NT5C NT5C ENTPD3 ENTPD3 NT5C3 NT5C3 AMPD2 AMPD2 ENTPD1 ENTPD1 UBC UBC ENTPD8 ENTPD8 NT5C2 NT5C2 ADSL ADSL CANT1 CANT1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
ADSLadenylosuccinate lyase; Catalyzes two non-sequential steps in de novo AMP synthesis- converts (S)-2-(5-amino-1-(5-phospho-D- ribosyl)imidazole-4-carboxamido)succinate (SAICAR) to fumarate plus 5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxamide, and thereby also contributes to de novo IMP synthesis, and converts succinyladenosine monophosphate (SAMP) to AMP and fumarate (484 aa)
NT5C1A5’-nucleotidase, cytosolic IA; Dephosphorylates the 5’ and 2’(3’)-phosphates of deoxyribonucleotides and has a broad substrate specificity. Helps to regulate adenosine levels in heart during ischemia and hypoxia (368 aa)
ATIC5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase; Bifunctional enzyme that catalyzes 2 steps in purine biosynthesis (592 aa)
NT5C35’-nucleotidase, cytosolic III (336 aa)
NT5C5’, 3’-nucleotidase, cytosolic; Dephosphorylates the 5’ and 2’(3’)-phosphates of deoxyribonucleotides, with a preference for dUMP and dTMP, intermediate activity towards dGMP, and low activity towards dCMP and dAMP (201 aa)
AMPD2adenosine monophosphate deaminase 2 (879 aa)
NT5E5’-nucleotidase, ecto (CD73); Hydrolyzes extracellular nucleotides into membrane permeable nucleosides. Exhibits AMP-, NAD-, and NMN-nucleosidase activities (574 aa)
GMPRguanosine monophosphate reductase; Catalyzes the irreversible NADPH-dependent deamination of GMP to IMP. It functions in the conversion of nucleobase, nucleoside and nucleotide derivatives of G to A nucleotides, and in maintaining the intracellular balance of A and G nucleotides (345 aa)
AMTaminomethyltransferase; The glycine cleavage system catalyzes the degradation of glycine (By similarity) (403 aa)
FTCDformiminotransferase cyclodeaminase; Folate-dependent enzyme, that displays both transferase and deaminase activity. Serves to channel one-carbon units from formiminoglutamate to the folate pool (541 aa)
HPRT1hypoxanthine phosphoribosyltransferase 1; Converts guanine to guanosine monophosphate, and hypoxanthine to inosine monophosphate. Transfers the 5- phosphoribosyl group from 5-phosphoribosylpyrophosphate onto the purine. Plays a central role in the generation of purine nucleotides through the purine salvage pathway (218 aa)
ENTPD3ectonucleoside triphosphate diphosphohydrolase 3; Has a threefold preference for the hydrolysis of ATP over ADP (529 aa)
CANT1calcium activated nucleotidase 1; Calcium-dependent nucleotidase with a preference for UDP. The order of activity with different substrates is UDP > GDP > UTP > GTP. Has very low activity towards ADP and even lower activity towards ATP. Does not hydrolyze AMP and GMP. Involved in proteoglycan synthesis (401 aa)
SHMT1serine hydroxymethyltransferase 1 (soluble); Interconversion of serine and glycine (By similarity) (483 aa)
DHFRL1dihydrofolate reductase-like 1; Key enzyme in folate metabolism. Contributes to the de novo mitochondrial thymidylate biosynthesis pathway. Required to prevent uracil accumulation in mtDNA. Binds its own mRNA and that of DHFR (187 aa)
ADSSL1adenylosuccinate synthase like 1; Component of the purine nucleotide cycle (PNC), which interconverts IMP and AMP to regulate the nucleotide levels in various tissues, and which contributes to glycolysis and ammoniagenesis. Catalyzes the first committed step in the biosynthesis of AMP from IMP (By similarity) (500 aa)
SHMT2serine hydroxymethyltransferase 2 (mitochondrial); Contributes to the de novo mitochondrial thymidylate biosynthesis pathway. Required to prevent uracil accumulation in mtDNA. Interconversion of serine and glycine. Associates with mitochondrial DNA (504 aa)
ENTPD5ectonucleoside triphosphate diphosphohydrolase 5; Uridine diphosphatase (UDPase) that promotes protein N- glycosylation and ATP level regulation. UDP hydrolysis promotes protein N-glycosylation and folding in the endoplasmic reticulum, as well as elevated ATP consumption in the cytosol via an ATP hydrolysis cycle. Together with CMPK1 and AK1, constitutes an ATP hydrolysis cycle that converts ATP to AMP and results in a compensatory increase in aerobic glycolysis. Also hydrolyzes GDP and IDP but not any other nucleoside di-, mono- or triphosphates, nor thiamine pyrophosphate. Plays a ke [...] (428 aa)
NT5C25’-nucleotidase, cytosolic II; May have a critical role in the maintenance of a constant composition of intracellular purine/pyrimidine nucleotides in cooperation with other nucleotidases. Preferentially hydrolyzes inosine 5’-monophosphate (IMP) and other purine nucleotides (561 aa)
UBCubiquitin C (685 aa)
ENTPD4ectonucleoside triphosphate diphosphohydrolase 4; Hydrolyzes preferentially nucleoside 5’-diphosphates, nucleoside 5’-triphosphates are hydrolyzed only to a minor extent. The order of activity with different substrates is UDP >> GDP = CDP = TDP, AMP, ADP, ATP and UMP are not substrates. Preferred substrates for isoform 2 are CTP, UDP, CDP, GTP and GDP, while isoform 1 utilizes UTP and TTP (616 aa)
ADSSadenylosuccinate synthase; Plays an important role in the de novo pathway and in the salvage pathway of purine nucleotide biosynthesis. Catalyzes the first commited step in the biosynthesis of AMP from IMP (By similarity) (456 aa)
MTR5-methyltetrahydrofolate-homocysteine methyltransferase; Catalyzes the transfer of a methyl group from methyl- cobalamin to homocysteine, yielding enzyme-bound cob(I)alamin and methionine. Subsequently, remethylates the cofactor using methyltetrahydrofolate (By similarity) (1265 aa)
ENTPD1ectonucleoside triphosphate diphosphohydrolase 1 (522 aa)
ENTPD8ectonucleoside triphosphate diphosphohydrolase 8; Canalicular ectonucleoside NTPDase responsible for the main hepatic NTPDase activity. Ectonucleoside NTPDases catalyze the hydrolysis of gamma- and beta-phosphate residues of nucleotides, playing a central role in concentration of extracellular nucleotides. Has activity toward ATP, ADP, UTP and UDP, but not toward AMP (495 aa)
ENTPD6ectonucleoside triphosphate diphosphohydrolase 6 (putative); Might support glycosylation reactions in the Golgi apparatus and, when released from cells, might catalyze the hydrolysis of extracellular nucleotides. Hydrolyzes preferentially nucleoside 5’-diphosphates, nucleoside 5’-triphosphates are hydrolyzed only to a minor extent, there is no hydrolysis of nucleoside 5’-monophosphates. The order of activity with different substrates is GDP > IDP >> UDP = CDP >> ADP (By similarity) (484 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: medium (43%)