Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
SRSF3 SRSF3 CPSF4 CPSF4 GTF2F2 GTF2F2 CLP1 CLP1 GTF2F1 GTF2F1 CPSF7 CPSF7 SNRPB2 SNRPB2 HNRNPF HNRNPF SRSF2 SRSF2 POLR2A POLR2A RBMX RBMX SNRPA SNRPA SNRPA1 SNRPA1 SRRT SRRT CSTF2 CSTF2 SF3A3 SF3A3 SNRPG SNRPG POLR2J POLR2J PRPF40A PRPF40A SNRNP70 SNRNP70 PPWD1 PPWD1 CASC3 CASC3 LSM4 LSM4 RBM17 RBM17 U2AF1L4 U2AF1L4 NAA38 NAA38
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
SNRPAsmall nuclear ribonucleoprotein polypeptide A; Binds stem loop II of U1 snRNA. It is the first snRNP to interact with pre-mRNA. This interaction is required for the subsequent binding of U2 snRNP and the U4/U6/U5 tri-snRNP. In a snRNP-free form (SF-A) may be involved in coupled pre-mRNA splicing and polyadenylation process. Binds preferentially to the 5’-UGCAC-3’ motif in vitro (282 aa)
SNRPB2small nuclear ribonucleoprotein polypeptide B; Involved in pre-mRNA splicing. This protein is associated with snRNP U2. It binds stem loop IV of U2 snRNA only in presence of the U2A’ protein (225 aa)
NAA38N(alpha)-acetyltransferase 38, NatC auxiliary subunit; Binds specifically to the 3’-terminal U-tract of U6 snRNA and is probably a component of the spliceosome (96 aa)
SNRPA1small nuclear ribonucleoprotein polypeptide A’; This protein is associated with sn-RNP U2. It helps the A’ protein to bind stem loop IV of U2 snRNA (255 aa)
PPWD1peptidylprolyl isomerase domain and WD repeat containing 1; Putative peptidylprolyl isomerase (PPIase). PPIases accelerate the folding of proteins. It catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides. May be involved in pre-mRNA splicing (646 aa)
CASC3cancer susceptibility candidate 3; Component of a splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junction on mRNAs. The EJC is a dynamic structure consisting of a few core proteins and several more peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. Core components of the EJC, that remains bound to spliced mRNAs throughout all stages of mRNA metabolism, functions to mark the position of the exon-exon junction in the mature mRNA and thereby influence [...] (703 aa)
SNRPGsmall nuclear ribonucleoprotein polypeptide G; Appears to function in the U7 snRNP complex that is involved in histone 3’-end processing. Associated with snRNP U1, U2, U4/U6 and U5 (76 aa)
CPSF4cleavage and polyadenylation specific factor 4, 30kDa; Component of the cleavage and polyadenylation specificity factor (CPSF) complex that play a key role in pre-mRNA 3’-end formation, recognizing the AAUAAA signal sequence and interacting with poly(A) polymerase and other factors to bring about cleavage and poly(A) addition. CPSF4 binds RNA polymers with a preference for poly(U) (269 aa)
POLR2Jpolymerase (RNA) II (DNA directed) polypeptide J, 13.3kDa; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase II which synthesizes mRNA precursors and many functional non-coding RNAs. Pol II is the central component of the basal RNA polymerase II transcription machinery. It is composed of mobile elements that move relative to each other. RPB11 is part of the core element with the central large cleft (By similarity) (117 aa)
U2AF1L4U2 small nuclear RNA auxiliary factor 1-like 4; RNA-binding protein that function as a pre-mRNA splicing factor. Plays a critical role in both constitutive and enhancer- dependent splicing by mediating protein-protein interactions and protein-RNA interactions required for accurate 3’-splice site selection. Acts by enhancing the binding of U2AF2 to weak pyrimidine tracts. Also participates in the regulation of alternative pre-mRNA splicing. Activates exon 5 skipping of PTPRC during T-cell activation; an event reversed by GFI1. Binds to RNA at the AG dinucleotide at the 3’-splice site (B [...] (202 aa)
SRRTserrate RNA effector molecule homolog (Arabidopsis) (876 aa)
POLR2Apolymerase (RNA) II (DNA directed) polypeptide A, 220kDa; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Largest and catalytic component of RNA polymerase II which synthesizes mRNA precursors and many functional non-coding RNAs. Forms the polymerase active center together with the second largest subunit. Pol II is the central component of the basal RNA polymerase II transcription machinery. It is composed of mobile elements that move relative to each other. RPB1 is part of the core element with the cen [...] (1970 aa)
HNRNPFheterogeneous nuclear ribonucleoprotein F; Component of the heterogeneous nuclear ribonucleoprotein (hnRNP) complexes which provide the substrate for the processing events that pre-mRNAs undergo before becoming functional, translatable mRNAs in the cytoplasm. Plays a role in the regulation of alternative splicing events. Binds G-rich sequences in pre-mRNAs and keeps target RNA in an unfolded state (415 aa)
GTF2F2general transcription factor IIF, polypeptide 2, 30kDa; TFIIF is a general transcription initiation factor that binds to RNA polymerase II and helps to recruit it to the initiation complex in collaboration with TFIIB. It promotes transcription elongation. This subunit shows ATP-dependent DNA- helicase activity (249 aa)
CPSF7cleavage and polyadenylation specific factor 7, 59kDa; Component of the cleavage factor Im complex (CFIm) that plays a key role in pre-mRNA 3’ processing. Binds to cleavage and polyadenylation RNA substrates (514 aa)
SRSF2serine/arginine-rich splicing factor 2; Necessary for the splicing of pre-mRNA. It is required for formation of the earliest ATP-dependent splicing complex and interacts with spliceosomal components bound to both the 5’- and 3’-splice sites during spliceosome assembly. It also is required for ATP-dependent interactions of both U1 and U2 snRNPs with pre- mRNA. Interacts with other spliceosomal components, via the RS domains, to form a bridge between the 5’- and 3’-splice site binding components, U1 snRNP and U2AF. Binds to purine-rich RNA sequences, either 5’-AGSAGAGTA-3’ (S=C or G) or [...] (221 aa)
RBMXRNA binding motif protein, X-linked; RNA-binding protein that plays several role in the regulation of pre- and post-transcriptional processes. Implicated in tissue-specific regulation of gene transcription and alternative splicing of several pre-mRNAs. Binds to and stimulates transcription from the tumor suppressor TXNIP gene promoter; may thus be involved in tumor suppression. When associated with SAFB, binds to and stimulates transcription from the SREBF1 promoter. Associates with nascent mRNAs transcribed by RNA polymerase II. Component of the supraspliceosome complex that regulates [...] (391 aa)
CSTF2cleavage stimulation factor, 3’ pre-RNA, subunit 2, 64kDa; One of the multiple factors required for polyadenylation and 3’-end cleavage of mammalian pre-mRNAs. This subunit is directly involved in the binding to pre-mRNAs (By similarity) (577 aa)
SF3A3splicing factor 3a, subunit 3, 60kDa; Subunit of the splicing factor SF3A required for ’A’ complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence (BPS) in pre-mRNA. Sequence independent binding of SF3A/SF3B complex upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA. May also be involved in the assembly of the ’E’ complex (501 aa)
SRSF3serine/arginine-rich splicing factor 3; May be involved in RNA processing in relation with cellular proliferation and/or maturation (164 aa)
RBM17RNA binding motif protein 17; Splice factor that binds to the single stranded 3’AG at the exon/intron border and promotes its utilization in the second catalytic step. Involved in the regulation of alternative splicing and the utilization of cryptic splice sites. Promotes the utilization of a cryptic splice site created by the beta-110 mutation in the HBB gene. The resulting frameshift leads to sickle cell anemia (401 aa)
GTF2F1general transcription factor IIF, polypeptide 1, 74kDa; TFIIF is a general transcription initiation factor that binds to RNA polymerase II and helps to recruit it to the initiation complex in collaboration with TFIIB. It promotes transcription elongation (517 aa)
PRPF40APRP40 pre-mRNA processing factor 40 homolog A (S. cerevisiae); Binds to WASL/N-WASP and suppresses its translocation from the nucleus to the cytoplasm, thereby inhibiting its cytoplasmic function (By similarity). Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the control of cell shape and migration. May play a role in cytokinesis. May be involved in pre-mRNA splicing (930 aa)
CLP1cleavage and polyadenylation factor I subunit 1; Polynucleotide kinase that can phosphorylate the 5’- hydroxyl groups of double-stranded RNA (dsRNA), single-stranded RNA (ssRNA), double stranded DNA (dsDNA) and double-stranded DNA-RNA hybrids. dsRNA is phosphorylated more efficiently than dsDNA, and the RNA component of a DNA-RNA hybrid is phosphorylated more efficiently than the DNA component. Appears to have roles in both tRNA splicing and mRNA 3’-end formation. Component of the tRNA splicing endonuclease complex. Phosphorylates the 5’-terminus of the tRNA 3’-exon during tRNA splicin [...] (425 aa)
LSM4LSM4 homolog, U6 small nuclear RNA associated (S. cerevisiae); Binds specifically to the 3’-terminal U-tract of U6 snRNA (139 aa)
SNRNP70small nuclear ribonucleoprotein 70kDa (U1) (437 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: medium (53%)