Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
RPL12 RPL12 RPL17 RPL17 RPL23 RPL23 RPS27 RPS27 RPL10A RPL10A RPS4Y1 RPS4Y1 RPS6 RPS6 EIF5 EIF5 CREBBP CREBBP RPL41 RPL41 RPS10 RPS10 EIF2S3 EIF2S3 EIF2S2 EIF2S2 EIF2B1 EIF2B1 EIF3A EIF3A UBC UBC EIF2AK4 EIF2AK4 EIF2S1 EIF2S1 EIF2B5 EIF2B5 EIF2B4 EIF2B4 EIF2B2 EIF2B2 EIF2AK2 EIF2AK2 EIF2B3 EIF2B3 STRN STRN DDX1 DDX1 POP1 POP1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
EIF5eukaryotic translation initiation factor 5; Catalyzes the hydrolysis of GTP bound to the 40S ribosomal initiation complex (40S.mRNA.Met-tRNA[F].eIF-2.GTP) with the subsequent joining of a 60S ribosomal subunit resulting in the release of eIF-2 and the guanine nucleotide. The subsequent joining of a 60S ribosomal subunit results in the formation of a functional 80S initiation complex (80S.mRNA.Met-tRNA[F]) (431 aa)
EIF2AK2eukaryotic translation initiation factor 2-alpha kinase 2; IFN-induced dsRNA-dependent serine/threonine-protein kinase which plays a key role in the innate immune response to viral infection and is also involved in the regulation of signal transduction, apoptosis, cell proliferation and differentiation. Exerts its antiviral activity on a wide range of DNA and RNA viruses including hepatitis C virus (HCV), hepatitis B virus (HBV), measles virus (MV) and herpes simplex virus 1 (HHV-1). Inhibits viral replication via phosphorylation of the alpha subunit of eukaryotic initiation factor 2 ( [...] (551 aa)
DDX1DEAD (Asp-Glu-Ala-Asp) box helicase 1; Acts as an ATP-dependent RNA helicase, able to unwind both RNA-RNA and RNA-DNA duplexes. Possesses 5’ single-stranded RNA overhang nuclease activity. Possesses ATPase activity on various RNA, but not DNA polynucleotides. May play a role in RNA clearance at DNA double-strand breaks (DSBs), thereby facilitating the template-guided repair of transcriptionally active regions of the genome. Together with RELA, acts as a coactivator to enhance NF-kappa-B-mediated transcriptional activation. Acts as a positive transcriptional regulator of cyclin CCND2 ex [...] (740 aa)
RPS4Y1ribosomal protein S4, Y-linked 1 (263 aa)
EIF2S3eukaryotic translation initiation factor 2, subunit 3 gamma, 52kDa; eIF-2 functions in the early steps of protein synthesis by forming a ternary complex with GTP and initiator tRNA. This complex binds to a 40S ribosomal subunit, followed by mRNA binding to form a 43S preinitiation complex. Junction of the 60S ribosomal subunit to form the 80S initiation complex is preceded by hydrolysis of the GTP bound to eIF-2 and release of an eIF-2-GDP binary complex. In order for eIF-2 to recycle and catalyze another round of initiation, the GDP bound to eIF-2 must exchange with GTP by way of a re [...] (472 aa)
EIF2S1eukaryotic translation initiation factor 2, subunit 1 alpha, 35kDa; Functions in the early steps of protein synthesis by forming a ternary complex with GTP and initiator tRNA. This complex binds to a 40S ribosomal subunit, followed by mRNA binding to form a 43S preinitiation complex. Junction of the 60S ribosomal subunit to form the 80S initiation complex is preceded by hydrolysis of the GTP bound to eIF-2 and release of an eIF-2-GDP binary complex. In order for eIF-2 to recycle and catalyze another round of initiation, the GDP bound to eIF-2 must exchange with GTP by way of a reaction [...] (315 aa)
CREBBPCREB binding protein; Acetylates histones, giving a specific tag for transcriptional activation. Also acetylates non-histone proteins, like NCOA3 and FOXO1. Binds specifically to phosphorylated CREB and enhances its transcriptional activity toward cAMP-responsive genes. Acts as a coactivator of ALX1 in the presence of EP300 (2442 aa)
EIF2AK4eukaryotic translation initiation factor 2 alpha kinase 4 (1649 aa)
STRNstriatin, calmodulin binding protein; Calmodulin-binding protein which may function as scaffolding or signaling protein and may play a role in dendritic Ca(2+) signaling (780 aa)
EIF2B2eukaryotic translation initiation factor 2B, subunit 2 beta, 39kDa; Catalyzes the exchange of eukaryotic initiation factor 2-bound GDP for GTP (351 aa)
EIF2B5eukaryotic translation initiation factor 2B, subunit 5 epsilon, 82kDa; Catalyzes the exchange of eukaryotic initiation factor 2-bound GDP for GTP (721 aa)
POP1processing of precursor 1, ribonuclease P/MRP subunit (S. cerevisiae); Component of ribonuclease P, a protein complex that generates mature tRNA molecules by cleaving their 5’-ends. Also a component of RNase MRP (1024 aa)
UBCubiquitin C (685 aa)
RPS10ribosomal protein S10; Component of the 40S ribosomal subunit (165 aa)
EIF2B3eukaryotic translation initiation factor 2B, subunit 3 gamma, 58kDa; Catalyzes the exchange of eukaryotic initiation factor 2-bound GDP for GTP (452 aa)
RPL12ribosomal protein L12; Binds directly to 26S ribosomal RNA (By similarity) (165 aa)
RPS27ribosomal protein S27 (84 aa)
EIF3Aeukaryotic translation initiation factor 3, subunit A; Component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis. The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2-GTP-methionyl-tRNAi and eIF-5 to form the 43S preinitiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination riboso [...] (1382 aa)
RPL10Aribosomal protein L10a (217 aa)
EIF2S2eukaryotic translation initiation factor 2, subunit 2 beta, 38kDa; eIF-2 functions in the early steps of protein synthesis by forming a ternary complex with GTP and initiator tRNA. This complex binds to a 40S ribosomal subunit, followed by mRNA binding to form a 43S preinitiation complex. Junction of the 60S ribosomal subunit to form the 80S initiation complex is preceded by hydrolysis of the GTP bound to eIF-2 and release of an eIF-2-GDP binary complex. In order for eIF-2 to recycle and catalyze another round of initiation, the GDP bound to eIF-2 must exchange with GTP by way of a rea [...] (333 aa)
RPS6ribosomal protein S6; May play an important role in controlling cell growth and proliferation through the selective translation of particular classes of mRNA (249 aa)
RPL23ribosomal protein L23 (140 aa)
EIF2B4eukaryotic translation initiation factor 2B, subunit 4 delta, 67kDa; Catalyzes the exchange of eukaryotic initiation factor 2-bound GDP for GTP (543 aa)
EIF2B1eukaryotic translation initiation factor 2B, subunit 1 alpha, 26kDa; Catalyzes the exchange of eukaryotic initiation factor 2-bound GDP for GTP (305 aa)
RPL41ribosomal protein L41 (25 aa)
RPL17ribosomal protein L17 (184 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: medium (70%)