Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
CYP11B2 CYP11B2 CYP17A1 CYP17A1 UGT2B17 UGT2B17 UGT2B4 UGT2B4 CYP11B1 CYP11B1 UGT2B7 UGT2B7 UGT2A1 UGT2A1 CYP19A1 CYP19A1 HSD17B3 HSD17B3 SRD5A1 SRD5A1 HSD17B1 HSD17B1 UGT1A5 UGT1A5 SRD5A3 SRD5A3 UGT2B11 UGT2B11 CYP3A4 CYP3A4 CYP1A1 CYP1A1 CYP3A5 CYP3A5 UGT1A1 UGT1A1 SULT1E1 SULT1E1 UGT1A6 UGT1A6 UGT1A9 UGT1A9 UGT1A4 UGT1A4 UGT1A7 UGT1A7 UGT1A10 UGT1A10 UGT1A8 UGT1A8 UGT1A3 UGT1A3
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
CYP3A5cytochrome P450, family 3, subfamily A, polypeptide 5; Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics (502 aa)
SULT1E1sulfotransferase family 1E, estrogen-preferring, member 1; Sulfotransferase that utilizes 3’-phospho-5’-adenylyl sulfate (PAPS) as sulfonate donor to catalyze the sulfate conjugation of estradiol and estrone. May play a role in the regulation of estrogen receptor activity by metabolizing free estradiol. Maximally sulfates beta-estradiol and estrone at concentrations of 20 nM. Also sulfates dehydroepiandrosterone, pregnenolone, ethinylestradiol, equalenin, diethylstilbesterol and 1-naphthol, at significantly higher concentrations; however, cortisol, testosterone and dopamine are not sulfated (294 aa)
CYP19A1cytochrome P450, family 19, subfamily A, polypeptide 1; Catalyzes the formation of aromatic C18 estrogens from C19 androgens (503 aa)
SRD5A3steroid 5 alpha-reductase 3; Plays a key role in early steps of protein N-linked glycosylation by being required for the conversion of polyprenol into dolichol. Dolichols are required for the synthesis of dolichol-linked monosaccharides and the oligosaccharide precursor used for N-glycosylation. Acts as a polyprenol reductase that promotes the reduction of the alpha-isoprene unit of polyprenols into dolichols in a NADP-dependent mechanism. Also able to convert testosterone (T) into 5-alpha-dihydrotestosterone (DHT) (318 aa)
SRD5A1steroid-5-alpha-reductase, alpha polypeptide 1 (3-oxo-5 alpha-steroid delta 4-dehydrogenase alpha 1); Converts testosterone into 5-alpha-dihydrotestosterone and progesterone or corticosterone into their corresponding 5- alpha-3-oxosteroids. It plays a central role in sexual differentiation and androgen physiology (259 aa)
CYP11B1cytochrome P450, family 11, subfamily B, polypeptide 1; Has steroid 11-beta-hydroxylase activity. In addition to this activity, the 18 or 19-hydroxylation of steroids and the aromatization of androstendione to estrone have also been ascribed to cytochrome P450 XIB (503 aa)
UGT1A6UDP glucuronosyltransferase 1 family, polypeptide A6; UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds. This isoform has specificity for phenols (532 aa)
UGT2B7UDP glucuronosyltransferase 2 family, polypeptide B7; UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds (529 aa)
UGT1A1UDP glucuronosyltransferase 1 family, polypeptide A1; UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds. This isoform glucuronidates bilirubin IX- alpha to form both the IX-alpha-C8 and IX-alpha-C12 monoconjugates and diconjugate. Is also able to catalyze the glucuronidation of 17beta-estradiol, 17alpha-ethinylestradiol, 1-hydroxypyrene, 4- methylumbelliferone, 1-naphthol, paranitrophenol, scopoletin, and umbelliferone (533 aa)
UGT2B4UDP glucuronosyltransferase 2 family, polypeptide B4; UDPGTs are of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds. This isozyme is active on polyhydroxylated estrogens (such as estriol, 4-hydroxyestrone and 2-hydroxyestriol) and xenobiotics (such as 4-methylumbelliferone, 1-naphthol, 4- nitrophenol, 2-aminophenol, 4-hydroxybiphenyl and menthol). It is capable of 6 alpha-hydroxyglucuronidation of hyodeoxycholic acid (528 aa)
UGT2B17UDP glucuronosyltransferase 2 family, polypeptide B17; UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds. The major substrates of this isozyme are eugenol > 4-methylumbelliferone > dihydrotestosterone (DHT) > androstane-3-alpha,17-beta-diol (3-alpha-diol) > testosterone > androsterone (ADT) (530 aa)
CYP11B2cytochrome P450, family 11, subfamily B, polypeptide 2; Preferentially catalyzes the conversion of 11- deoxycorticosterone to aldosterone via corticosterone and 18- hydroxycorticosterone (503 aa)
CYP3A4cytochrome P450, family 3, subfamily A, polypeptide 4; Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It performs a variety of oxidation reactions (e.g. caffeine 8-oxidation, omeprazole sulphoxidation, midazolam 1’-hydroxylation and midazolam 4- hydroxylation) of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Acts as a 1,8-cineole 2- exo-monooxygenase. The enzyme also hydroxylates etoposide (503 aa)
UGT1A10UDP glucuronosyltransferase 1 family, polypeptide A10; UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds (530 aa)
UGT1A9UDP glucuronosyltransferase 1 family, polypeptide A9; UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds. This isoform has specificity for phenols (530 aa)
CYP17A1cytochrome P450, family 17, subfamily A, polypeptide 1; Conversion of pregnenolone and progesterone to their 17- alpha-hydroxylated products and subsequently to dehydroepiandrosterone (DHEA) and androstenedione. Catalyzes both the 17-alpha-hydroxylation and the 17,20-lyase reaction. Involved in sexual development during fetal life and at puberty (508 aa)
UGT1A4UDP glucuronosyltransferase 1 family, polypeptide A4; UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds. This isoform glucuronidates bilirubin IX- alpha to form both the IX-alpha-C8 and IX-alpha-C12 monoconjugates and diconjugate (534 aa)
UGT1A5UDP glucuronosyltransferase 1 family, polypeptide A5; UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds (534 aa)
UGT1A7UDP glucuronosyltransferase 1 family, polypeptide A7; UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds (530 aa)
UGT1A8UDP glucuronosyltransferase 1 family, polypeptide A8; UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds (530 aa)
HSD17B3hydroxysteroid (17-beta) dehydrogenase 3; Favors the reduction of androstenedione to testosterone. Uses NADPH while the two other EDH17B enzymes use NADH (310 aa)
CYP1A1cytochrome P450, family 1, subfamily A, polypeptide 1; Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics (512 aa)
UGT2B11UDP glucuronosyltransferase 2 family, polypeptide B11; UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds (529 aa)
UGT2A1UDP glucuronosyltransferase 2 family, polypeptide A1, complex locus; UDP-glucuronosyltransferases catalyze phase II biotransformation reactions in which lipophilic substrates are conjugated with glucuronic acid to increase water solubility and enhance excretion. They are of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds. Active on odorants and seems to be involved in olfaction; it could help clear lipophilic odorant molecules from the sensory epithelium (536 aa)
UGT1A3UDP glucuronosyltransferase 1 family, polypeptide A3; UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds (534 aa)
HSD17B1hydroxysteroid (17-beta) dehydrogenase 1; Favors the reduction of estrogens and androgens. Also has 20-alpha-HSD activity. Uses preferentially NADH (328 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: medium (42%)