Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
PLA2G1B PLA2G1B PLA2G4A PLA2G4A PLA2G2E PLA2G2E PCYT2 PCYT2 PLA2G3 PLA2G3 PLA2G2A PLA2G2A PLA2G4D PLA2G4D PLA2G2C PLA2G2C PLA2G16 PLA2G16 ENSG00000168970 ENSG00000168970 DGKI DGKI EPT1 EPT1 PLA2G2F PLA2G2F DGKQ DGKQ CHPT1 CHPT1 PLD3 PLD3 PLA2G4B PLA2G4B MBOAT1 MBOAT1 DGKA DGKA PLA2G4C PLA2G4C LPIN2 LPIN2 DGKZ DGKZ LPIN3 LPIN3 PPAP2A PPAP2A DGKD DGKD DGKH DGKH
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
PLA2G3phospholipase A2, group III; PA2 catalyzes the calcium-dependent hydrolysis of the 2- acyl groups in 3-sn-phosphoglycerides. Shows an 11-fold preference for phosphatidylglycerol over phosphatidylcholine (PC). Preferential cleavage- 1-palmitoyl-2-linoleoyl- phosphatidylethanolamine (PE) > 1-palmitoyl-2-linoleoyl-PC > 1- palmitoyl-2-arachidonoyl-PC > 1-palmitoyl-2-arachidonoyl-PE. Plays a role in ciliogenesis (509 aa)
CHPT1choline phosphotransferase 1 (406 aa)
PLA2G2Cphospholipase A2, group IIC; Inactive phospholipase (Probable) (150 aa)
EPT1ethanolaminephosphotransferase 1 (CDP-ethanolamine-specific); Catalyzes phosphatidylethanolamine biosynthesis from CDP-ethanolamine. It thereby plays a central role in the formation and maintenance of vesicular membranes. Involved in the formation of phosphatidylethanolamine via ’Kennedy’ pathway (397 aa)
LPIN2lipin 2; Plays important roles in controlling the metabolism of fatty acids at differents levels. Acts as a magnesium-dependent phosphatidate phosphatase enzyme which catalyzes the conversion of phosphatidic acid to diacylglycerol during triglyceride, phosphatidylcholine and phosphatidylethanolamine biosynthesis in the reticulum endoplasmic membrane. Acts also as a nuclear transcriptional coactivator for PPARGC1A to modulate lipid metabolism (By similarity) (896 aa)
DGKDdiacylglycerol kinase, delta 130kDa; May function as signaling molecule (1214 aa)
PPAP2Aphosphatidic acid phosphatase type 2A; Broad-specificity phosphohydrolase that dephosphorylates exogenous bioactive glycerolipids and sphingolipids. Catalyzes the conversion of phosphatidic acid (PA) to diacylglycerol (DG). Pivotal regulator of lysophosphatidic acid (LPA) signaling in the cardiovascular system. Major enzyme responsible of dephosphorylating LPA in platelets, which terminates signaling actions of LPA. May control circulating, and possibly also regulate localized, LPA levels resulting from platelet activation. It has little activity towards ceramide-1-phosphate (C-1-P) an [...] (285 aa)
DGKQdiacylglycerol kinase, theta 110kDa; Phosphorylates diacylglycerol (DAG) to generate phosphatidic acid (PA). May regulate the activity of protein kinase C by controlling the balance between these two signaling lipids. Activated in the nucleus in response to alpha-thrombin and nerve growth factor (By similarity). May be involved in cAMP- induced activation of NR5A1 and subsequent steroidogenic gene transcription by delivering PA as ligand for NR5A1. Acts synergistically with NR5A1 on CYP17 transcriptional activity (942 aa)
DGKIdiacylglycerol kinase, iota (1065 aa)
PLA2G4Dphospholipase A2, group IVD (cytosolic); Calcium-dependent phospholipase A2 that selectively hydrolyzes glycerophospholipids in the sn-2 position. Not arachidonic acid-specific but has linoleic acid-specific activity. May play a role in inflammation in psoriatic lesions (818 aa)
PLA2G1Bphospholipase A2, group IB (pancreas); PA2 catalyzes the calcium-dependent hydrolysis of the 2- acyl groups in 3-sn-phosphoglycerides, this releases glycerophospholipids and arachidonic acid that serve as the precursors of signal molecules (148 aa)
PLA2G16phospholipase A2, group XVI; Exhibits PLA1/2 activity, catalyzing the calcium- independent hydrolysis of acyl groups in various phosphatidylcholines (PC) and phosphatidylethanolamine (PE). For most substrates, PLA1 activity is much higher than PLA2 activity. Specifically catalyzes the release of fatty acids from phospholipids in adipose tissue (By similarity). N- and O- acylation activity is hardly detectable. Might decrease protein phosphatase 2A (PP2A) activity (162 aa)
MBOAT1membrane bound O-acyltransferase domain containing 1; Acyltransferase which mediates the conversion of lysophosphatidylserine (1-acyl-2-hydroxy-sn-glycero-3-phospho-L- serine or LPS) into phosphatidylserine (1,2-diacyl-sn-glycero-3- phospho-L-serine or PS) (LPSAT activity). Prefers oleoyl-CoA as the acyl donor. Lysophospholipid acyltransferases (LPLATs) catalyze the reacylation step of the phospholipid remodeling pathway also known as the Lands cycle (495 aa)
DGKAdiacylglycerol kinase, alpha 80kDa; Upon cell stimulation converts the second messenger diacylglycerol into phosphatidate, initiating the resynthesis of phosphatidylinositols and attenuating protein kinase C activity (735 aa)
DGKHdiacylglycerol kinase, eta (1220 aa)
PLD3phospholipase D family, member 3 (490 aa)
PLA2G4Aphospholipase A2, group IVA (cytosolic, calcium-dependent); Selectively hydrolyzes arachidonyl phospholipids in the sn-2 position releasing arachidonic acid. Together with its lysophospholipid activity, it is implicated in the initiation of the inflammatory response (749 aa)
LPIN3lipin 3; Regulates fatty acid metabolism. Magnesium-dependent phosphatidate phosphatase enzyme which catalyzes the conversion of phosphatidic acid to diacylglycerol during triglyceride, phosphatidylcholine and phosphatidylethanolamine biosynthesis (By similarity) (851 aa)
PLA2G2Fphospholipase A2, group IIF; PA2 catalyzes the calcium-dependent hydrolysis of the 2- acyl groups in 3-sn-phosphoglycerides. Hydrolyzes phosphatidylglycerol versus phosphatidylcholine with a 15-fold preference (211 aa)
PLA2G2Aphospholipase A2, group IIA (platelets, synovial fluid); Thought to participate in the regulation of the phospholipid metabolism in biomembranes including eicosanoid biosynthesis. Catalyzes the calcium-dependent hydrolysis of the 2- acyl groups in 3-sn-phosphoglycerides (144 aa)
PLA2G2Ephospholipase A2, group IIE; PA2 catalyzes the calcium-dependent hydrolysis of the 2- acyl groups in 3-sn-phosphoglycerides. Has a preference for arachidonic-containing phospholipids (142 aa)
ENSG00000168970JMJD7-PLA2G4B readthrough (1012 aa)
PLA2G4Bphospholipase A2, group IVB (cytosolic); Calcium-dependent phospholipase A2 that selectively hydrolyzes glycerophospholipids in the sn-2 position with a preference for arachidonoyl phospholipids. Has a much weaker activity than PLA2G4A. Isoform 3 has calcium-dependent activity against palmitoyl-arachidonyl-phosphatidylethanolamine and low level lysophospholipase activity but no activity against phosphatidylcholine. Isoform 5 does have activity against phosphatidylcholine (781 aa)
PLA2G4Cphospholipase A2, group IVC (cytosolic, calcium-independent); Has a preference for arachidonic acid at the sn-2 position of phosphatidylcholine as compared with palmitic acid (541 aa)
DGKZdiacylglycerol kinase, zeta; Displays a strong preference for 1,2-diacylglycerols over 1,3-diacylglycerols, but lacks substrate specificity among molecular species of long chain diacylglycerols. Isoform 2 but not isoform 1 regulates RASGRP1 activity (1117 aa)
PCYT2phosphate cytidylyltransferase 2, ethanolamine; Plays an important role in the biosynthesis of the phospholipid phosphatidylethanolamine. Catalyzes the formation of CDP-ethanolamine (407 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: medium (42%)