Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
OGT OGT STBD1 STBD1 NHLRC1 NHLRC1 BUB3 BUB3 PPP1R3B PPP1R3B GYG2 GYG2 PPP1R3C PPP1R3C PPP1CC PPP1CC GYG1 GYG1 PPP1CB PPP1CB PYGL PYGL PRKACG PRKACG GBE1 GBE1 PYGB PYGB GYS2 GYS2 GYS1 GYS1 PRKACA PRKACA UGP2 UGP2 PRKACB PRKACB PRKAG1 PRKAG1 ENPP3 ENPP3 ENPP1 ENPP1 PRKAG2 PRKAG2 PRKAG3 PRKAG3 UGDH UGDH GART GART
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
PYGLphosphorylase, glycogen, liver; Phosphorylase is an important allosteric enzyme in carbohydrate metabolism. Enzymes from different sources differ in their regulatory mechanisms and in their natural substrates. However, all known phosphorylases share catalytic and structural properties (By similarity) (847 aa)
PYGBphosphorylase, glycogen; brain; Phosphorylase is an important allosteric enzyme in carbohydrate metabolism. Enzymes from different sources differ in their regulatory mechanisms and in their natural substrates. However, all known phosphorylases share catalytic and structural properties (By similarity) (843 aa)
PRKAG3protein kinase, AMP-activated, gamma 3 non-catalytic subunit; AMP/ATP-binding subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes- inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. Al [...] (489 aa)
STBD1starch binding domain 1; May have the capability to bind to carbohydrates (Potential) (358 aa)
PPP1R3Cprotein phosphatase 1, regulatory subunit 3C; Acts as a glycogen-targeting subunit for PP1 and regulates its activity. Activates glycogen synthase, reduces glycogen phosphorylase activity and limits glycogen breakdown. Dramatically increases basal and insulin-stimulated glycogen synthesis upon overexpression in a variety of cell types (317 aa)
GYS2glycogen synthase 2 (liver); Transfers the glycosyl residue from UDP-Glc to the non- reducing end of alpha-1,4-glucan (703 aa)
PRKAG2protein kinase, AMP-activated, gamma 2 non-catalytic subunit; AMP/ATP-binding subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes- inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. Al [...] (569 aa)
PPP1CBprotein phosphatase 1, catalytic subunit, beta isozyme; Protein phosphatase that associates with over 200 regulatory proteins to form highly specific holoenzymes which dephosphorylate hundreds of biological targets. Protein phosphatase (PP1) is essential for cell division, it participates in the regulation of glycogen metabolism, muscle contractility and protein synthesis. Involved in regulation of ionic conductances and long-term synaptic plasticity. Component of the PTW/PP1 phosphatase complex, which plays a role in the control of chromatin structure and cell cycle progression during [...] (327 aa)
PPP1R3Bprotein phosphatase 1, regulatory subunit 3B; Acts as a glycogen-targeting subunit for phosphatase PP1. Facilitates interaction of the PP1 with enzymes of the glycogen metabolism and regulates its activity. Suppresses the rate at which PP1 dephosphorylates (inactivates) glycogen phosphorylase and enhances the rate at which it activates glycogen synthase and therefore limits glycogen breakdown. Its activity is inhibited by PYGL, resulting in inhibition of the glycogen synthase and glycogen phosphorylase phosphatase activities of PP1. Dramatically increases basal and insulin-stimulated g [...] (285 aa)
PRKACAprotein kinase, cAMP-dependent, catalytic, alpha; Phosphorylates a large number of substrates in the cytoplasm and the nucleus. Regulates the abundance of compartmentalized pools of its regulatory subunits through phosphorylation of PJA2 which binds and ubiquitinates these subunits, leading to their subsequent proteolysis. Phosphorylates CDC25B, ABL1, NFKB1, CLDN3, PSMC5/RPT6, PJA2, RYR2, RORA, TRPC1 and VASP. RORA is activated by phosphorylation. Required for glucose-mediated adipogenic differentiation increase and osteogenic differentiation inhibition from osteoblasts. Involved in th [...] (351 aa)
GYS1glycogen synthase 1 (muscle); Transfers the glycosyl residue from UDP-Glc to the non- reducing end of alpha-1,4-glucan (737 aa)
UGDHUDP-glucose 6-dehydrogenase; Involved in the biosynthesis of glycosaminoglycans; hyaluronan, chondroitin sulfate, and heparan sulfate (494 aa)
PRKAG1protein kinase, AMP-activated, gamma 1 non-catalytic subunit; AMP/ATP-binding subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes- inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. Al [...] (340 aa)
PPP1CCprotein phosphatase 1, catalytic subunit, gamma isozyme; Protein phosphatase that associates with over 200 regulatory proteins to form highly specific holoenzymes which dephosphorylate hundreds of biological targets. Protein phosphatase 1 (PP1) is essential for cell division, and participates in the regulation of glycogen metabolism, muscle contractility and protein synthesis. Dephosphorylates RPS6KB1. Involved in regulation of ionic conductances and long-term synaptic plasticity. May play an important role in dephosphorylating substrates such as the postsynaptic density- associated Ca [...] (323 aa)
UGP2UDP-glucose pyrophosphorylase 2; Plays a central role as a glucosyl donor in cellular metabolic pathways (508 aa)
GYG1glycogenin 1; Self-glucosylates, via an inter-subunit mechanism, to form an oligosaccharide primer that serves as substrate for glycogen synthase (350 aa)
NHLRC1NHL repeat containing 1; E3 ubiquitin-protein ligase which in complex with EPM2A/laforin and HSP70 suppresses the cellular toxicity of misfolded proteins by promoting their degradation through the ubiquitin-proteasome system (UPS). Ubiquitinates PPP1R3C/PTG in a laforin-dependent manner, and targets it for proteasome-dependent degradation and this degradation decreases glycogen accumulation. Polyubiquitinates EPM2A/laforin and ubiquitinates AGL and targets them for proteasome-dependent degradation (395 aa)
ENPP3ectonucleotide pyrophosphatase/phosphodiesterase 3; Cleaves a variety of phosphodiester and phosphosulfate bonds including deoxynucleotides, nucleotide sugars, and NAD (By similarity) (875 aa)
ENPP1ectonucleotide pyrophosphatase/phosphodiesterase 1; By generating PPi, plays a role in regulating pyrophosphate levels, and functions in bone mineralization and soft tissue calcification. PPi inhibits mineralization by binding to nascent hydroxyapatite (HA) crystals, thereby preventing further growth of these crystals. In vitro, has a broad specificity, hydrolyzing other nucleoside 5’ triphosphates such as GTP, CTP, TTP and UTP to their corresponding monophosphates with release of pyrophosphate and diadenosine polyphosphates, and also 3’,5’-cAMP to AMP. May also be involved in the regu [...] (925 aa)
BUB3budding uninhibited by benzimidazoles 3 homolog (yeast); Has a dual function in spindle-assembly checkpoint signaling and in promoting the establishment of correct kinetochore-microtubule (K-MT) attachments. Promotes the formation of stable end-on bipolar attachments. Necessary for kinetochore localization of BUB1. Regulates chromosome segregation during oocyte meiosis. The BUB1/BUB3 complex plays a role in the inhibition of anaphase-promoting complex or cyclosome (APC/C) when spindle-assembly checkpoint is activated and inhibits the ubiquitin ligase activity of APC/C by phosphorylatin [...] (328 aa)
PRKACBprotein kinase, cAMP-dependent, catalytic, beta (398 aa)
OGTO-linked N-acetylglucosamine (GlcNAc) transferase; Catalyzes the transfer of a single N-acetylglucosamine from UDP-GlcNAc to a serine or threonine residue in cytoplasmic and nuclear proteins resulting in their modification with a beta- linked N-acetylglucosamine (O-GlcNAc). Glycosylates a large and diverse number of proteins including histone H2B, AKT1, PFKL, MLL5, MAPT/TAU and HCFC1. Can regulate their cellular processes via cross-talk between glycosylation and phosphorylation or by affecting proteolytic processing. Involved in insulin resistance in muscle and adipocyte cells via glyc [...] (1046 aa)
PRKACGprotein kinase, cAMP-dependent, catalytic, gamma; Phosphorylates a large number of substrates in the cytoplasm and the nucleus (351 aa)
GYG2glycogenin 2; Self-glucosylates, via an inter-subunit mechanism, to form an oligosaccharide primer that serves as substrate for glycogen synthase (501 aa)
GARTphosphoribosylglycinamide formyltransferase, phosphoribosylglycinamide synthetase, phosphoribosylaminoimidazole synthetase (1010 aa)
GBE1glucan (1,4-alpha-), branching enzyme 1; Required for sufficient glycogen accumulation. The alpha 1-6 branches of glycogen play an important role in increasing the solubility of the molecule and, consequently, in reducing the osmotic pressure within cells (702 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: low (25%)