Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
NAE1 NAE1 UBA3 UBA3 UBA5 UBA5 UBA6 UBA6 UBA7 UBA7 ATG7 ATG7 SAE1 SAE1 UBA2 UBA2 UBA1 UBA1 PSAT1 PSAT1 MOCS3 MOCS3 SEPT8 SEPT8 PARVA PARVA MOCOS MOCOS SCLY SCLY CTH CTH BHMT BHMT NFS1 NFS1 TST TST MPST MPST ISCA2 ISCA2 MTR MTR FXN FXN BHMT2 BHMT2 NFU1 NFU1 TSTD1 TSTD1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
MOCS3molybdenum cofactor synthesis 3; Plays a central role in 2-thiolation of mcm(5)S(2)U at tRNA wobble positions of tRNA(Lys), tRNA(Glu) and tRNA(Gln). Also essential during biosynthesis of the molybdenum cofactor. Acts by mediating the C-terminal thiocarboxylation of sulfur carriers URM1 and MOCS2A. Its N-terminus first activates URM1 and MOCS2A as acyl-adenylates (-COAMP), then the persulfide sulfur on the catalytic cysteine is transferred to URM1 and MOCS2A to form thiocarboxylation (-COSH) of their C-terminus. The reaction probably involves hydrogen sulfide that is generated from the [...] (460 aa)
UBA2ubiquitin-like modifier activating enzyme 2; The heterodimer acts as a E1 ligase for SUMO1, SUMO2, SUMO3, and probably SUMO4. It mediates ATP-dependent activation of SUMO proteins followed by formation of a thioester bond between a SUMO protein and a conserved active site cysteine residue on UBA2/SAE2 (640 aa)
TSTthiosulfate sulfurtransferase (rhodanese); Formation of iron-sulfur complexes, cyanide detoxification or modification of sulfur-containing enzymes. Other thiol compounds, besides cyanide, can act as sulfur ion acceptors. Also has weak mercaptopyruvate sulfurtransferase (MST) activity (By similarity). Together with MRPL18, acts as a mitochondrial import factor for the cytosolic 5S rRNA. Only the nascent unfolded cytoplasmic form is able to bind to the 5S rRNA (297 aa)
SCLYselenocysteine lyase; Catalyzes the decomposition of L-selenocysteine to L- alanine and elemental selenium (By similarity) (453 aa)
BHMT2betaine--homocysteine S-methyltransferase 2; Involved in the regulation of homocysteine metabolism. Converts homocysteine to methionine using S-methylmethionine (SMM) as a methyl donor (363 aa)
MOCOSmolybdenum cofactor sulfurase; Sulfurates the molybdenum cofactor. Sulfation of molybdenum is essential for xanthine dehydrogenase (XDH) and aldehyde oxidase (ADO) enzymes in which molybdenum cofactor is liganded by 1 oxygen and 1 sulfur atom in active form. In vitro, the C-terminal domain is able to reduce N-hydroxylated prodrugs, such as benzamidoxime (888 aa)
SAE1SUMO1 activating enzyme subunit 1; The heterodimer acts as a E1 ligase for SUMO1, SUMO2, SUMO3, and probably SUMO4. It mediates ATP-dependent activation of SUMO proteins followed by formation of a thioester bond between a SUMO protein and a conserved active site cysteine residue on UBA2/SAE2 (346 aa)
BHMTbetaine--homocysteine S-methyltransferase; Involved in the regulation of homocysteine metabolism. Converts betaine and homocysteine to dimethylglycine and methionine, respectively. This reaction is also required for the irreversible oxidation of choline (406 aa)
NAE1NEDD8 activating enzyme E1 subunit 1; Regulatory subunit of the dimeric UBA3-NAE1 E1 enzyme. E1 activates NEDD8 by first adenylating its C-terminal glycine residue with ATP, thereafter linking this residue to the side chain of the catalytic cysteine, yielding a NEDD8-UBA3 thioester and free AMP. E1 finally transfers NEDD8 to the catalytic cysteine of UBE2M. Necessary for cell cycle progression through the S-M checkpoint. Overexpression of NAE1 causes apoptosis through deregulation of NEDD8 conjugation (534 aa)
UBA6ubiquitin-like modifier activating enzyme 6 (1052 aa)
UBA7ubiquitin-like modifier activating enzyme 7; Activates ubiquitin by first adenylating with ATP its C- terminal glycine residue and thereafter linking this residue to the side chain of a cysteine residue in E1, yielding an ubiquitin- E1 thioester and free AMP (1012 aa)
PARVAparvin, alpha; Plays a role in sarcomere organization and in smooth muscle cell contraction. Required for normal development of the embryonic cardiovascular system, and for normal septation of the heart outflow tract. Plays a role in sprouting angiogenesis and is required for normal adhesion of vascular smooth muscle cells to endothelial cells during blood vessel development (By similarity). Plays a role in the reorganization of the actin cytoskeleton, formation of lamellipodia and ciliogenesis. Plays a role in the establishement of cell polarity, cell adhesion, cell spreading, and dir [...] (412 aa)
UBA1ubiquitin-like modifier activating enzyme 1; Activates ubiquitin by first adenylating its C-terminal glycine residue with ATP, and thereafter linking this residue to the side chain of a cysteine residue in E1, yielding an ubiquitin- E1 thioester and free AMP (1058 aa)
ATG7autophagy related 7; Functions as an E1 enzyme essential for multisubstrates such as ATG8-like proteins and ATG12. Forms intermediate conjugates with ATG8-like proteins (GABARAP, GABARAPL1, GABARAPL2 or MAP1LC3A). PE-conjugation to ATG8-like proteins is essential for autophagy. Also acts as an E1 enzyme for ATG12 conjugation to ATG5 and ATG3 (By similarity) (703 aa)
UBA5ubiquitin-like modifier activating enzyme 5; E1-like enzyme which activates UFM1 and SUMO2 (404 aa)
UBA3ubiquitin-like modifier activating enzyme 3; Catalytic subunit of the dimeric UBA3-NAE1 E1 enzyme. E1 activates NEDD8 by first adenylating its C-terminal glycine residue with ATP, thereafter linking this residue to the side chain of the catalytic cysteine, yielding a NEDD8-UBA3 thioester and free AMP. E1 finally transfers NEDD8 to the catalytic cysteine of UBE2M. Down-regulates steroid receptor activity. Necessary for cell cycle progression (463 aa)
MTR5-methyltetrahydrofolate-homocysteine methyltransferase; Catalyzes the transfer of a methyl group from methyl- cobalamin to homocysteine, yielding enzyme-bound cob(I)alamin and methionine. Subsequently, remethylates the cofactor using methyltetrahydrofolate (By similarity) (1265 aa)
CTHcystathionase (cystathionine gamma-lyase); Catalyzes the last step in the trans-sulfuration pathway from methionine to cysteine. Has broad substrate specificity. Converts cystathionine to cysteine, ammonia and 2-oxobutanoate. Converts two cysteine molecules to lanthionine and hydrogen sulfide. Can also accept homocysteine as substrate. Specificity depends on the levels of the endogenous substrates. Generates the endogenous signaling molecule hydrogen sulfide (H2S), and so contributes to the regulation of blood pressure. Acts as a cysteine-protein sulfhydrase by mediating sulfhydration [...] (405 aa)
NFS1NFS1 nitrogen fixation 1 homolog (S. cerevisiae); Catalyzes the removal of elemental sulfur from cysteine to produce alanine. It supplies the inorganic sulfur for iron- sulfur (Fe-S) clusters. May be involved in the biosynthesis of molybdenum cofactor (457 aa)
PSAT1phosphoserine aminotransferase 1; Catalyzes the reversible conversion of 3- phosphohydroxypyruvate to phosphoserine and of 3-hydroxy-2-oxo-4- phosphonooxybutanoate to phosphohydroxythreonine (By similarity) (370 aa)
FXNfrataxin; Promotes the biosynthesis of heme and assembly and repair of iron-sulfur clusters by delivering Fe(2+) to proteins involved in these pathways. May play a role in the protection against iron-catalyzed oxidative stress through its ability to catalyze the oxidation of Fe(2+) to Fe(3+); the oligomeric form but not the monomeric form has in vitro ferroxidase activity. May be able to store large amounts of iron in the form of a ferrihydrite mineral by oligomerization; however, the physiological relevance is unsure as reports are conflicting and the function has only been shown usin [...] (210 aa)
SEPT8septin 8; Filament-forming cytoskeletal GTPase (By similarity). May play a role in cytokinesis (Potential). May play a role in platelet secretion (483 aa)
MPSTmercaptopyruvate sulfurtransferase; Transfer of a sulfur ion to cyanide or to other thiol compounds. Also has weak rhodanese activity. Detoxifies cyanide and is required for thiosulfate biosynthesis. Acts as an antioxidant. In combination with cysteine aminotransferase (CAT), contributes to the catabolism of cysteine and is an important producer of hydrogen sulfide in the brain, retina and vascular endothelial cells. Hydrogen sulfide H(2)S is an important synaptic modulator, signaling molecule, smooth muscle contractor and neuroprotectant. Its production by the 3MST/CAT pathway is regu [...] (317 aa)
NFU1NFU1 iron-sulfur cluster scaffold homolog (S. cerevisiae); Iron-sulfur cluster scaffold protein which can assemble [4Fe-2S] clusters and deliver them to target proteins (254 aa)
TSTD1thiosulfate sulfurtransferase (rhodanese)-like domain containing 1; Possible role in tumorigenesis (115 aa)
ISCA2iron-sulfur cluster assembly 2 homolog (S. cerevisiae); Involved in the assembly of mitochondrial iron-sulfur proteins. Probably involved in the binding of an intermediate of Fe/S cluster assembly (By similarity) (154 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: medium (46%)