Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
SATL1 SATL1 GCSH GCSH NUDT14 NUDT14 WDR31 WDR31 NUDT1 NUDT1 HLCS HLCS LIPT1 LIPT1 NUDT10 NUDT10 GNPNAT1 GNPNAT1 OLAH OLAH LIAS LIAS AANAT AANAT LIPT2 LIPT2 FASN FASN GNB2L1 GNB2L1 POLR1C POLR1C SAT1 SAT1 DCP2 DCP2 NDUFAB1 NDUFAB1 NUDT2 NUDT2 POLR2C POLR2C UQCRC1 UQCRC1 UQCRC2 UQCRC2 NUDT11 NUDT11 PMPCB PMPCB PMPCA PMPCA
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
NDUFAB1NADH dehydrogenase (ubiquinone) 1, alpha/beta subcomplex, 1, 8kDa; Carrier of the growing fatty acid chain in fatty acid biosynthesis in mitochondria. Accessory and non-catalytic subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), which functions in the transfer of electrons from NADH to the respiratory chain (By similarity) (156 aa)
UQCRC1ubiquinol-cytochrome c reductase core protein I; This is a component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain. This protein may mediate formation of the complex between cytochromes c and c1 (480 aa)
GNPNAT1glucosamine-phosphate N-acetyltransferase 1 (184 aa)
POLR2Cpolymerase (RNA) II (DNA directed) polypeptide C, 33kDa; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase II which synthesizes mRNA precursors and many functional non-coding RNAs. Pol II is the central component of the basal RNA polymerase II transcription machinery. It is composed of mobile elements that move relative to each other. RPB3 is part of the core element with the central large cleft and the clamp element that moves to open and close the cleft (By similarity) (275 aa)
PMPCBpeptidase (mitochondrial processing) beta; Cleaves presequences (transit peptides) from mitochondrial protein precursors (By similarity) (489 aa)
AANATaralkylamine N-acetyltransferase; Controls the night/day rhythm of melatonin production in the pineal gland. Catalyzes the N-acetylation of serotonin into N- acetylserotonin, the penultimate step in the synthesis of melatonin (252 aa)
LIASlipoic acid synthetase; Catalyzes the radical-mediated insertion of two sulfur atoms into the C-6 and C-8 positions of the octanoyl moiety bound to the lipoyl domains of lipoate-dependent enzymes, thereby converting the octanoylated domains into lipoylated derivatives (By similarity) (372 aa)
UQCRC2ubiquinol-cytochrome c reductase core protein II; This is a component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain. The core protein 2 is required for the assembly of the complex (453 aa)
FASNfatty acid synthase (2511 aa)
LIPT2lipoyl(octanoyl) transferase 2 (putative); Catalyzes the transfer of endogenously produced octanoic acid from octanoyl-acyl-carrier-protein onto the lipoyl domains of lipoate-dependent enzymes. Lipoyl-ACP can also act as a substrate although octanoyl-ACP is likely to be the physiological substrate (By similarity) (231 aa)
GCSHglycine cleavage system protein H (aminomethyl carrier); The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein (173 aa)
HLCSholocarboxylase synthetase (biotin-(proprionyl-CoA-carboxylase (ATP-hydrolysing)) ligase); Post-translational modification of specific protein by attachment of biotin. Acts on various carboxylases such as acetyl- CoA-carboxylase, pyruvate carboxylase, propionyl CoA carboxylase, and 3-methylcrotonyl CoA carboxylase (726 aa)
NUDT2nudix (nucleoside diphosphate linked moiety X)-type motif 2; Asymmetrically hydrolyzes Ap4A to yield AMP and ATP. Plays a major role in maintaining homeostasis (147 aa)
NUDT1nudix (nucleoside diphosphate linked moiety X)-type motif 1; Antimutagenic. Acts as a sanitizing enzyme for oxidized nucleotide pools, thus suppressing cell dysfunction and death induced by oxidative stress. Hydrolyzes 8-oxo-dGTP, 8-oxo-dATP and 2-OH-dATP, thus preventing misincorporation of oxidized purine nucleoside triphosphates into DNA and subsequently preventing A-T to C-G and G-C to T-A transversions. Able to hydrolyze also the corresponding ribonucleotides, 2-OH-ATP, 8-oxo-GTP and 8-oxo-ATP. Does not play a role in U8 snoRNA decapping activity. Binds U8 snoRNA (179 aa)
LIPT1lipoyltransferase 1; Catalyzes the transfer of the lipoyl group from lipoyl- AMP to the specific lysine residue of lipoyl domains of lipoate- dependent enzymes (By similarity) (373 aa)
NUDT10nudix (nucleoside diphosphate linked moiety X)-type motif 10; Cleaves a beta-phosphate from the diphosphate groups in PP-InsP5 (diphosphoinositol pentakisphosphate), suggesting that it may play a role in signal transduction. Also able to catalyze the hydrolysis of dinucleoside oligophosphates, with Ap6A and Ap5A being the preferred substrates. The major reaction products are ADP and p4a from Ap6A and ADP and ATP from Ap5A. Also able to hydrolyze 5-phosphoribose 1-diphosphate (164 aa)
PMPCApeptidase (mitochondrial processing) alpha; Cleaves presequences (transit peptides) from mitochondrial protein precursors (By similarity) (525 aa)
POLR1Cpolymerase (RNA) I polypeptide C, 30kDa; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Common component of RNA polymerases I and III which synthesize ribosomal RNA precursors and small RNAs, such as 5S rRNA and tRNAs, respectively. RPAC1 is part of the Pol core element with the central large cleft and probably a clamp element that moves to open and close the cleft (By similarity) (346 aa)
WDR31WD repeat domain 31 (367 aa)
NUDT11nudix (nucleoside diphosphate linked moiety X)-type motif 11; Cleaves a beta-phosphate from the diphosphate groups in PP-InsP5 (diphosphoinositol pentakisphosphate), suggesting that it may play a role in signal transduction. Also able to catalyze the hydrolysis of dinucleoside oligophosphates, with Ap6A and Ap5A being the preferred substrates. The major reaction products are ADP and p4a from Ap6A and ADP and ATP from Ap5A. Also able to hydrolyze 5-phosphoribose 1-diphosphate (164 aa)
OLAHoleoyl-ACP hydrolase; In fatty acid biosynthesis chain termination and release of the free fatty acid product is achieved by hydrolysis of the thio ester by a thioesterase I, a component of the fatty acid synthetase complex. The chain length of the released fatty acid is usually C16. However, in the mammary glands of non-ruminant mammals, and in the uropygial gland of certain waterfowl there exists a second thioesterase which releases medium-chain length fatty acids (C8 to C2) (By similarity) (318 aa)
SAT1spermidine/spermine N1-acetyltransferase 1; Enzyme which catalyzes the acetylation of polyamines. Substrate specificity- norspermidine = spermidine >> spermine > N(1)-acetylspermine > putrescine. This highly regulated enzyme allows a fine attenuation of the intracellular concentration of polyamines. Also involved in the regulation of polyamine transport out of cells. Acts on 1,3-diaminopropane, 1,5-diaminopentane, putrescine, spermidine (forming N(1)- and N(8)-acetylspermidine), spermine, N(1)-acetylspermidine and N(8)-acetylspermidine (171 aa)
DCP2DCP2 decapping enzyme homolog (S. cerevisiae); Decapping metalloenzyme that catalyzes the cleavage of the cap structure on mRNAs. Removes the 7-methyl guanine cap structure from mRNA molecules, yielding a 5’-phosphorylated mRNA fragment and 7m-GDP. Necessary for the degradation of mRNAs, both in normal mRNA turnover and in nonsense-mediated mRNA decay. Plays a role in replication-dependent histone mRNA degradation. Has higher activity towards mRNAs that lack a poly(A) tail. Has no activity towards a cap structure lacking a RNA moiety (420 aa)
NUDT14nudix (nucleoside diphosphate linked moiety X)-type motif 14; Hydrolyzes UDP-glucose to glucose 1-phosphate and UMP and ADP-ribose to ribose 5-phosphate and AMP. The physiological substrate is probably UDP-glucose. Poor activity on other substrates such as ADP-glucose, CDP-glucose, GDP-glucose and GDP- mannose (222 aa)
SATL1spermidine/spermine N1-acetyl transferase-like 1 (632 aa)
GNB2L1guanine nucleotide binding protein (G protein), beta polypeptide 2-like 1 (317 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: medium (47%)