Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
CHRNA9 CHRNA9 CHRFAM7A CHRFAM7A NAA25 NAA25 CHRNG CHRNG SFSWAP SFSWAP CHRNA10 CHRNA10 BICC1 BICC1 CHRNB1 CHRNB1 TRIM23 TRIM23 CHRNA1 CHRNA1 CHRNA4 CHRNA4 UBQLN1 UBQLN1 CHRNA5 CHRNA5 CHRNA2 CHRNA2 PFAS PFAS CHRNB4 CHRNB4 CHRNE CHRNE CHRND CHRND CHRNA3 CHRNA3 UMPS UMPS JAK2 JAK2 CHRNA7 CHRNA7 STXBP5 STXBP5 CHRNB3 CHRNB3 RIMS2 RIMS2 PI4KA PI4KA
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
TRIM23tripartite motif containing 23; Acts as an E3 ubiquitin-protein ligase. In the presence of the human cytomegalovirus (HCMV) protein UL144, participates in ’Lys-63’-linked auto-ubiquitination of TRAF6 resulting in the virally controlled activation of NF-kappa-B at early time of infection. The C-terminus can act as an allosteric activator of the cholera toxin catalytic subunit (574 aa)
UMPSuridine monophosphate synthetase (480 aa)
CHRNA10cholinergic receptor, nicotinic, alpha 10 (neuronal); Ionotropic receptor with a probable role in the modulation of auditory stimuli. Agonist binding may induce an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane. The channel is permeable to a range of divalent cations including calcium, the influx of which may activate a potassium current which hyperpolarizes the cell membrane. In the ear, this may lead to a reduction in basilar membrane motion, altering the activity of auditory nerve fibers and red [...] (450 aa)
CHRNDcholinergic receptor, nicotinic, delta (muscle); After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane (517 aa)
CHRNA1cholinergic receptor, nicotinic, alpha 1 (muscle); After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane (482 aa)
SFSWAPsplicing factor, suppressor of white-apricot homolog (Drosophila); Plays a role as an alternative splicing regulator. Regulate its own expression at the level of RNA processing. Also regulates the splicing of fibronectin and CD45 genes. May act, at least in part, by interaction with other R/S-containing splicing factors. Represses the splicing of MAPT/Tau exon 10 (951 aa)
NAA25N(alpha)-acetyltransferase 25, NatB auxiliary subunit; Non-catalytic subunit of the NatB complex which catalyzes acetylation of the N-terminal methionine residues of peptides beginning with Met-Asp-Glu. May play a role in normal cell-cycle progression (972 aa)
CHRNB4cholinergic receptor, nicotinic, beta 4 (neuronal); After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane (498 aa)
CHRNB3cholinergic receptor, nicotinic, beta 3 (neuronal); After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane (458 aa)
CHRNEcholinergic receptor, nicotinic, epsilon (muscle); After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane (493 aa)
CHRNA5cholinergic receptor, nicotinic, alpha 5 (neuronal); After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane (468 aa)
CHRFAM7ACHRNA7 (cholinergic receptor, nicotinic, alpha 7, exons 5-10) and FAM7A (family with sequence similarity 7A, exons A-E) fusion (412 aa)
CHRNB1cholinergic receptor, nicotinic, beta 1 (muscle); After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane (501 aa)
CHRNA9cholinergic receptor, nicotinic, alpha 9 (neuronal); Ionotropic receptor with a probable role in the modulation of auditory stimuli. Agonist binding may induce an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane. The channel is permeable to a range of divalent cations including calcium, the influx of which may activate a potassium current which hyperpolarizes the cell membrane. In the ear, this may lead to a reduction in basilar membrane motion, altering the activity of auditory nerve fibers and redu [...] (479 aa)
PFASphosphoribosylformylglycinamidine synthase (1338 aa)
CHRNA3cholinergic receptor, nicotinic, alpha 3 (neuronal); After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane (505 aa)
STXBP5syntaxin binding protein 5 (tomosyn); Plays a regulatory role in calcium-dependent exocytosis and neurotransmitter release. Inhibits membrane fusion between transport vesicles and the plasma membrane. May modulate the assembly of trans-SNARE complexes between transport vesicles and the plasma membrane. Inhibits translocation of GLUT4 from intracellular vesicles to the plasma membrane. Competes with STXBP1 for STX1 binding (By similarity) (1151 aa)
CHRNA4cholinergic receptor, nicotinic, alpha 4 (neuronal); After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane permeable to sodium ions (627 aa)
BICC1bicaudal C homolog 1 (Drosophila); Putative RNA-binding protein. Acts as a negative regulator of Wnt signaling. May be involved in regulating gene expression during embryonic development (974 aa)
UBQLN1ubiquilin 1; Links CD47 to the cytoskeleton. Promotes the surface expression of GABA-A receptors (By similarity). Promotes the accumulation of uncleaved PSEN1 and PSEN2 by stimulating their biosynthesis. Has no effect on PSEN1 and PSEN2 degradation (589 aa)
JAK2Janus kinase 2; Non-receptor tyrosine kinase involved in various processes such as cell growth, development, differentiation or histone modifications. Mediates essential signaling events in both innate and adaptive immunity. In the cytoplasm, plays a pivotal role in signal transduction via its association with type I receptors such as growth hormone (GHR), prolactin (PRLR), leptin (LEPR), erythropoietin (EPOR), thrombopoietin (THPO); or type II receptors including IFN-alpha, IFN-beta, IFN-gamma and multiple interleukins. Following ligand-binding to cell surface receptors, phosphorylate [...] (1132 aa)
CHRNGcholinergic receptor, nicotinic, gamma (muscle); After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane (517 aa)
RIMS2regulating synaptic membrane exocytosis 2; Rab effector involved in exocytosis. May act as scaffold protein (1349 aa)
CHRNA2cholinergic receptor, nicotinic, alpha 2 (neuronal); After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane (529 aa)
CHRNA7cholinergic receptor, nicotinic, alpha 7 (neuronal); After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane. The channel is blocked by alpha-bungarotoxin (531 aa)
PI4KAphosphatidylinositol 4-kinase, catalytic, alpha; Acts on phosphatidylinositol (PtdIns) in the first committed step in the production of the second messenger inositol- 1,4,5,-trisphosphate (2044 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: medium (45%)