Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
NMNAT2 NMNAT2 ENPP3 ENPP3 BST1 BST1 ENPP1 ENPP1 CD38 CD38 NMNAT3 NMNAT3 THY1 THY1 NADSYN1 NADSYN1 IDH2 IDH2 NUDT12 NUDT12 NADK NADK NMNAT1 NMNAT1 SLC26A2 SLC26A2 ABCD3 ABCD3 NNT NNT LRP1 LRP1 POFUT1 POFUT1 UQCR11 UQCR11 NDUFS6 NDUFS6 SF1 SF1 SLC25A6 SLC25A6 ATP5B ATP5B PTCD1 PTCD1 FKBP8 FKBP8 ATP6V1F ATP6V1F
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
FKBP8FK506 binding protein 8, 38kDa; Constitutively inactive PPiase, which becomes active when bound to calmodulin and calcium. Seems to act as a chaperone for BCL2, targets it to the mitochondria and modulates its phosphorylation state. The BCL2/FKBP8/calmodulin/calcium complex probably interferes with the binding of BCL2 to its targets. The active form of FKBP8 may therefore play a role in the regulation of apoptosis (413 aa)
CD38CD38 molecule; Synthesizes cyclic ADP-ribose, a second messenger for glucose-induced insulin secretion. Also has cADPr hydrolase activity. Also moonlights as a receptor in cells of the immune system (300 aa)
NUDT12nudix (nucleoside diphosphate linked moiety X)-type motif 12; Hydrolyzes NAD(P)H to NMNH and AMP (2’,5’-ADP), and diadenosine diphosphate to AMP. Has also activity towards NAD(P)(+), ADP-ribose and diadenosine triphosphate. May act to regulate the concentration of peroxisomal nicotinamide nucleotide cofactors required for oxidative metabolism in this organelle (462 aa)
LRP1low density lipoprotein receptor-related protein 1; Endocytic receptor involved in endocytosis and in phagocytosis of apoptotic cells. Required for early embryonic development. Involved in cellular lipid homeostasis. Involved in the plasma clearance of chylomicron remnants and activated LRPAP1 (alpha 2-macroglobulin), as well as the local metabolism of complexes between plasminogen activators and their endogenous inhibitors. May modulate cellular events, such as APP metabolism, kinase-dependent intracellular signaling, neuronal calcium signaling as well as neurotransmission (4544 aa)
ATP5BATP synthase, H+ transporting, mitochondrial F1 complex, beta polypeptide; Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is couple [...] (529 aa)
NNTnicotinamide nucleotide transhydrogenase; The transhydrogenation between NADH and NADP is coupled to respiration and ATP hydrolysis and functions as a proton pump across the membrane. May play a role in reactive oxygen species (ROS) detoxification in the adrenal gland (1086 aa)
BST1bone marrow stromal cell antigen 1; Synthesizes cyclic ADP-ribose, a second messenger that elicits calcium release from intracellular stores. May be involved in pre-B-cell growth (318 aa)
NDUFS6NADH dehydrogenase (ubiquinone) Fe-S protein 6, 13kDa (NADH-coenzyme Q reductase); Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (124 aa)
THY1Thy-1 cell surface antigen; May play a role in cell-cell or cell-ligand interactions during synaptogenesis and other events in the brain (161 aa)
SLC26A2solute carrier family 26 (sulfate transporter), member 2; Sulfate transporter. May play a role in endochondral bone formation (739 aa)
NMNAT2nicotinamide nucleotide adenylyltransferase 2; Catalyzes the formation of NAD(+) from nicotinamide mononucleotide (NMN) and ATP. Can also use the deamidated form; nicotinic acid mononucleotide (NaMN) as substrate but with a lower efficiency. Cannot use triazofurin monophosphate (TrMP) as substrate. Also catalyzes the reverse reaction, i.e. the pyrophosphorolytic cleavage of NAD(+). For the pyrophosphorolytic activity prefers NAD(+), NADH and NAAD as substrates and degrades nicotinic acid adenine dinucleotide phosphate (NHD) less effectively. Fails to cleave phosphorylated dinucleotides [...] (307 aa)
NADSYN1NAD synthetase 1 (706 aa)
IDH2isocitrate dehydrogenase 2 (NADP+), mitochondrial; Plays a role in intermediary metabolism and energy production. It may tightly associate or interact with the pyruvate dehydrogenase complex (452 aa)
NMNAT3nicotinamide nucleotide adenylyltransferase 3; Catalyzes the formation of NAD(+) from nicotinamide mononucleotide (NMN) and ATP. Can also use the deamidated form; nicotinic acid mononucleotide (NaMN) as substrate with the same efficiency. Can use triazofurin monophosphate (TrMP) as substrate. Can also use GTP and ITP as nucleotide donors. Also catalyzes the reverse reaction, i.e. the pyrophosphorolytic cleavage of NAD(+). For the pyrophosphorolytic activity, can use NAD (+), NADH, NAAD, nicotinic acid adenine dinucleotide phosphate (NHD), nicotinamide guanine dinucleotide (NGD) as subs [...] (215 aa)
NADKNAD kinase (591 aa)
ENPP3ectonucleotide pyrophosphatase/phosphodiesterase 3; Cleaves a variety of phosphodiester and phosphosulfate bonds including deoxynucleotides, nucleotide sugars, and NAD (By similarity) (875 aa)
ENPP1ectonucleotide pyrophosphatase/phosphodiesterase 1; By generating PPi, plays a role in regulating pyrophosphate levels, and functions in bone mineralization and soft tissue calcification. PPi inhibits mineralization by binding to nascent hydroxyapatite (HA) crystals, thereby preventing further growth of these crystals. In vitro, has a broad specificity, hydrolyzing other nucleoside 5’ triphosphates such as GTP, CTP, TTP and UTP to their corresponding monophosphates with release of pyrophosphate and diadenosine polyphosphates, and also 3’,5’-cAMP to AMP. May also be involved in the regu [...] (925 aa)
ABCD3ATP-binding cassette, sub-family D (ALD), member 3; Probable transporter. The nucleotide-binding fold acts as an ATP-binding subunit with ATPase activity (659 aa)
POFUT1protein O-fucosyltransferase 1; Catalyzes the reaction that attaches fucose through an O-glycosidic linkage to a conserved serine or threonine residue found in the consensus sequence C2-X(4,5)-[S/T]-C3 of EGF domains, where C2 and C3 are the second and third conserved cysteines. Specifically uses GDP-fucose as donor substrate and proper disulfide pairing of the substrate EGF domains is required for fucose transfer. Plays a crucial role in NOTCH signaling. Initial fucosylation of NOTCH by POFUT1 generates a substrate for FRINGE/RFNG, an acetylglucosaminyltransferase that can then extend [...] (388 aa)
NMNAT1nicotinamide nucleotide adenylyltransferase 1; Catalyzes the formation of NAD(+) from nicotinamide mononucleotide (NMN) and ATP. Can also use the deamidated form; nicotinic acid mononucleotide (NaMN) as substrate with the same efficiency. Can use triazofurin monophosphate (TrMP) as substrate. Also catalyzes the reverse reaction, i.e. the pyrophosphorolytic cleavage of NAD(+). For the pyrophosphorolytic activity, prefers NAD(+) and NAAD as substrates and degrades NADH, nicotinic acid adenine dinucleotide phosphate (NHD) and nicotinamide guanine dinucleotide (NGD) less effectively. Fails [...] (279 aa)
SF1splicing factor 1 (673 aa)
SLC25A6solute carrier family 25 (mitochondrial carrier; adenine nucleotide translocator), member 6; Catalyzes the exchange of cytoplasmic ADP with mitochondrial ATP across the mitochondrial inner membrane. May participate in the formation of the permeability transition pore complex (PTPC) responsible for the release of mitochondrial products that triggers apoptosis (298 aa)
ATP6V1FATPase, H+ transporting, lysosomal 14kDa, V1 subunit F; Subunit of the peripheral V1 complex of vacuolar ATPase essential for assembly or catalytic function. V-ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells (147 aa)
PTCD1pentatricopeptide repeat domain 1; Mitochondrial protein implicated in negative regulation of leucine tRNA levels, as well as negative regulation of mitochondria-encoded proteins and COX activity. Affects also the 3’ processing of mitochondrial tRNAs (749 aa)
UQCR11ubiquinol-cytochrome c reductase, complex III subunit XI; This is a component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain (56 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: medium (58%)