Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
DDHD2 DDHD2 RTN4IP1 RTN4IP1 UGT2B4 UGT2B4 UGT1A5 UGT1A5 HMOX1 HMOX1 HMOX2 HMOX2 UGT2B7 UGT2B7 UGT2A3 UGT2A3 MAPK3 MAPK3 MAP2K1 MAP2K1 UGT1A1 UGT1A1 BLVRA BLVRA BLVRB BLVRB MAPK1 MAPK1 UGT1A6 UGT1A6 UGT1A7 UGT1A7 UGT2B17 UGT2B17 UGT1A9 UGT1A9 UGT1A10 UGT1A10 UGT1A3 UGT1A3 UGT2B11 UGT2B11 UGT1A4 UGT1A4 UGT1A8 UGT1A8 UGT2A1 UGT2A1 UGT2B10 UGT2B10 UGT2B15 UGT2B15
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
MAPK1mitogen-activated protein kinase 1; Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. MAPK1/ERK2 and MAPK3/ERK1 are the 2 MAPKs which play an important role in the MAPK/ERK cascade. They participate also in a signaling cascade initiated by activated KIT and KITLG/SCF. Depending on the cellular context, the MAPK/ERK cascade mediates diverse biological functions such as cell growth, adhesion, survival and differentiation through the regulation of transcription, translation, cytoskeletal rearrangements. The MAPK/ERK cascade plays a [...] (360 aa)
HMOX1heme oxygenase (decycling) 1; Heme oxygenase cleaves the heme ring at the alpha methene bridge to form biliverdin. Biliverdin is subsequently converted to bilirubin by biliverdin reductase. Under physiological conditions, the activity of heme oxygenase is highest in the spleen, where senescent erythrocytes are sequestrated and destroyed (288 aa)
HMOX2heme oxygenase (decycling) 2; Heme oxygenase cleaves the heme ring at the alpha methene bridge to form biliverdin. Biliverdin is subsequently converted to bilirubin by biliverdin reductase. Under physiological conditions, the activity of heme oxygenase is highest in the spleen, where senescent erythrocytes are sequestrated and destroyed. Heme oxygenase 2 could be implicated in the production of carbon monoxide in brain where it could act as a neurotransmitter (316 aa)
UGT2A3UDP glucuronosyltransferase 2 family, polypeptide A3; UDP-glucuronosyltransferases catalyze phase II biotransformation reactions in which lipophilic substrates are conjugated with glucuronic acid to increase water solubility and enhance excretion. They are of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds (By similarity) (527 aa)
MAPK3mitogen-activated protein kinase 3; Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. MAPK1/ERK2 and MAPK3/ERK1 are the 2 MAPKs which play an important role in the MAPK/ERK cascade. They participate also in a signaling cascade initiated by activated KIT and KITLG/SCF. Depending on the cellular context, the MAPK/ERK cascade mediates diverse biological functions such as cell growth, adhesion, survival and differentiation through the regulation of transcription, translation, cytoskeletal rearrangements. The MAPK/ERK cascade plays a [...] (379 aa)
BLVRBbiliverdin reductase B (flavin reductase (NADPH)); Broad specificity oxidoreductase that catalyzes the NADPH-dependent reduction of a variety of flavins, such as riboflavin, FAD or FMN, biliverdins, methemoglobin and PQQ (pyrroloquinoline quinone). Contributes to heme catabolism and metabolizes linear tetrapyrroles. Can also reduce the complexed Fe(3+) iron to Fe(2+) in the presence of FMN and NADPH. In the liver, converts biliverdin to bilirubin (206 aa)
UGT2B10UDP glucuronosyltransferase 2 family, polypeptide B10; UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds (528 aa)
BLVRAbiliverdin reductase A; Reduces the gamma-methene bridge of the open tetrapyrrole, biliverdin IX alpha, to bilirubin with the concomitant oxidation of a NADH or NADPH cofactor (296 aa)
MAP2K1mitogen-activated protein kinase kinase 1; Dual specificity protein kinase which acts as an essential component of the MAP kinase signal transduction pathway. Binding of extracellular ligands such as growth factors, cytokines and hormones to their cell-surface receptors activates RAS and this initiates RAF1 activation. RAF1 then further activates the dual-specificity protein kinases MAP2K1/MEK1 and MAP2K2/MEK2. Both MAP2K1/MEK1 and MAP2K2/MEK2 function specifically in the MAPK/ERK cascade, and catalyze the concomitant phosphorylation of a threonine and a tyrosine residue in a Thr-Glu-T [...] (393 aa)
UGT1A6UDP glucuronosyltransferase 1 family, polypeptide A6; UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds. This isoform has specificity for phenols (532 aa)
UGT2B7UDP glucuronosyltransferase 2 family, polypeptide B7; UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds (529 aa)
UGT1A1UDP glucuronosyltransferase 1 family, polypeptide A1; UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds. This isoform glucuronidates bilirubin IX- alpha to form both the IX-alpha-C8 and IX-alpha-C12 monoconjugates and diconjugate. Is also able to catalyze the glucuronidation of 17beta-estradiol, 17alpha-ethinylestradiol, 1-hydroxypyrene, 4- methylumbelliferone, 1-naphthol, paranitrophenol, scopoletin, and umbelliferone (533 aa)
UGT2B4UDP glucuronosyltransferase 2 family, polypeptide B4; UDPGTs are of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds. This isozyme is active on polyhydroxylated estrogens (such as estriol, 4-hydroxyestrone and 2-hydroxyestriol) and xenobiotics (such as 4-methylumbelliferone, 1-naphthol, 4- nitrophenol, 2-aminophenol, 4-hydroxybiphenyl and menthol). It is capable of 6 alpha-hydroxyglucuronidation of hyodeoxycholic acid (528 aa)
UGT2B17UDP glucuronosyltransferase 2 family, polypeptide B17; UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds. The major substrates of this isozyme are eugenol > 4-methylumbelliferone > dihydrotestosterone (DHT) > androstane-3-alpha,17-beta-diol (3-alpha-diol) > testosterone > androsterone (ADT) (530 aa)
UGT2B15UDP glucuronosyltransferase 2 family, polypeptide B15; UDPGTs are of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds. This isozyme displays activity toward several classes of xenobiotic substrates, including simple phenolic compounds, 7-hydroxylated coumarins, flavonoids, anthraquinones, and certain drugs and their hydroxylated metabolites. It also catalyzes the glucuronidation of endogenous estrogens and androgens (530 aa)
UGT1A10UDP glucuronosyltransferase 1 family, polypeptide A10; UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds (530 aa)
UGT1A9UDP glucuronosyltransferase 1 family, polypeptide A9; UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds. This isoform has specificity for phenols (530 aa)
RTN4IP1reticulon 4 interacting protein 1; Appears to be a potent inhibitor of regeneration following spinal cord injury (396 aa)
UGT1A4UDP glucuronosyltransferase 1 family, polypeptide A4; UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds. This isoform glucuronidates bilirubin IX- alpha to form both the IX-alpha-C8 and IX-alpha-C12 monoconjugates and diconjugate (534 aa)
UGT1A5UDP glucuronosyltransferase 1 family, polypeptide A5; UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds (534 aa)
UGT1A7UDP glucuronosyltransferase 1 family, polypeptide A7; UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds (530 aa)
UGT1A8UDP glucuronosyltransferase 1 family, polypeptide A8; UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds (530 aa)
DDHD2DDHD domain containing 2; Phospholipase that hydrolyzes preferentially phosphatidic acid, including 1,2-dioleoyl-sn-phosphatidic acid, and phosphatidylethanolamine. Specifically binds to phosphatidylinositol 3-phosphate (PI(3)P), phosphatidylinositol 4- phosphate (PI(4)P), phosphatidylinositol 5-phosphate (PI(5)P) and possibly phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). May be involved in the maintenance of the endoplasmic reticulum and/or Golgi structures. May regulate the transport between Golgi apparatus and plasma membrane (711 aa)
UGT2B11UDP glucuronosyltransferase 2 family, polypeptide B11; UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds (529 aa)
UGT2A1UDP glucuronosyltransferase 2 family, polypeptide A1, complex locus; UDP-glucuronosyltransferases catalyze phase II biotransformation reactions in which lipophilic substrates are conjugated with glucuronic acid to increase water solubility and enhance excretion. They are of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds. Active on odorants and seems to be involved in olfaction; it could help clear lipophilic odorant molecules from the sensory epithelium (536 aa)
UGT1A3UDP glucuronosyltransferase 1 family, polypeptide A3; UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds (534 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: medium (58%)