Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
PDE1A PDE1A PDE10A PDE10A PDE11A PDE11A PDE1B PDE1B ADSL ADSL ADK ADK AMPD2 AMPD2 DCK DCK AMPD3 AMPD3 NT5C2 NT5C2 RRM2B RRM2B AK7 AK7 NT5E NT5E ENTPD8 ENTPD8 ENTPD2 ENTPD2 RRM1 RRM1 PDE4A PDE4A ENTPD3 ENTPD3 PDE7B PDE7B PDE7A PDE7A NME7 NME7 NME3 NME3 PDE4C PDE4C NME1-NME2 NME1-NME2 PKM PKM PNPT1 PNPT1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
ADSLadenylosuccinate lyase; Catalyzes two non-sequential steps in de novo AMP synthesis- converts (S)-2-(5-amino-1-(5-phospho-D- ribosyl)imidazole-4-carboxamido)succinate (SAICAR) to fumarate plus 5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxamide, and thereby also contributes to de novo IMP synthesis, and converts succinyladenosine monophosphate (SAMP) to AMP and fumarate (484 aa)
NME3NME/NM23 nucleoside diphosphate kinase 3; Major role in the synthesis of nucleoside triphosphates other than ATP. The ATP gamma phosphate is transferred to the NDP beta phosphate via a ping-pong mechanism, using a phosphorylated active-site intermediate. Probably has a role in normal hematopoiesis by inhibition of granulocyte differentiation and induction of apoptosis (169 aa)
PDE1Bphosphodiesterase 1B, calmodulin-dependent; Cyclic nucleotide phosphodiesterase with a dual- specificity for the second messengers cAMP and cGMP, which are key regulators of many important physiological processes. Has a preference for cGMP as a substrate (536 aa)
RRM2Bribonucleotide reductase M2 B (TP53 inducible) (351 aa)
AMPD2adenosine monophosphate deaminase 2 (879 aa)
NT5E5’-nucleotidase, ecto (CD73); Hydrolyzes extracellular nucleotides into membrane permeable nucleosides. Exhibits AMP-, NAD-, and NMN-nucleosidase activities (574 aa)
AK7adenylate kinase 7; Adenylate kinase involved in maintaining ciliary structure and function (By similarity). Has highest activity toward AMP, and weaker activity toward dAMP, CMP and dCMP (723 aa)
PDE4Aphosphodiesterase 4A, cAMP-specific (886 aa)
PDE11Aphosphodiesterase 11A; Plays a role in signal transduction by regulating the intracellular concentration of cyclic nucleotides cAMP and cGMP. Catalyzes the hydrolysis of both cAMP and cGMP to 5’-AMP and 5’- GMP, respectively (933 aa)
ADKadenosine kinase; ATP dependent phosphorylation of adenosine and other related nucleoside analogs to monophosphate derivatives. Serves as a potential regulator of concentrations of extracellular adenosine and intracellular adenine nucleotides (362 aa)
DCKdeoxycytidine kinase; Required for the phosphorylation of the deoxyribonucleosides deoxycytidine (dC), deoxyguanosine (dG) and deoxyadenosine (dA). Has broad substrate specificity, and does not display selectivity based on the chirality of the substrate. It is also an essential enzyme for the phosphorylation of numerous nucleoside analogs widely employed as antiviral and chemotherapeutic agents (260 aa)
RRM1ribonucleotide reductase M1; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides (By similarity) (792 aa)
ENTPD3ectonucleoside triphosphate diphosphohydrolase 3; Has a threefold preference for the hydrolysis of ATP over ADP (529 aa)
PDE7Bphosphodiesterase 7B; Hydrolyzes the second messenger cAMP, which is a key regulator of many important physiological processes. May be involved in the control of cAMP-mediated neural activity and cAMP metabolism in the brain (450 aa)
PKMpyruvate kinase, muscle (531 aa)
PDE1Aphosphodiesterase 1A, calmodulin-dependent (545 aa)
NT5C25’-nucleotidase, cytosolic II; May have a critical role in the maintenance of a constant composition of intracellular purine/pyrimidine nucleotides in cooperation with other nucleotidases. Preferentially hydrolyzes inosine 5’-monophosphate (IMP) and other purine nucleotides (561 aa)
ENTPD2ectonucleoside triphosphate diphosphohydrolase 2; In the nervous system, could hydrolyze ATP and other nucleotides to regulate purinergic neurotransmission. Hydrolyzes ADP only to a marginal extent. The order of activity with different substrates is ATP > GTP > CTP = ITP > UTP >> ADP = UDP (495 aa)
PDE4Cphosphodiesterase 4C, cAMP-specific; Hydrolyzes the second messenger cAMP, which is a key regulator of many important physiological processes (712 aa)
NME7NME/NM23 family member 7; Major role in the synthesis of nucleoside triphosphates other than ATP. The ATP gamma phosphate is transferred to the NDP beta phosphate via a ping-pong mechanism, using a phosphorylated active-site intermediate (376 aa)
ENTPD8ectonucleoside triphosphate diphosphohydrolase 8; Canalicular ectonucleoside NTPDase responsible for the main hepatic NTPDase activity. Ectonucleoside NTPDases catalyze the hydrolysis of gamma- and beta-phosphate residues of nucleotides, playing a central role in concentration of extracellular nucleotides. Has activity toward ATP, ADP, UTP and UDP, but not toward AMP (495 aa)
NME1-NME2NME1-NME2 readthrough; Major role in the synthesis of nucleoside triphosphates other than ATP. The ATP gamma phosphate is transferred to the NDP beta phosphate via a ping-pong mechanism, using a phosphorylated active-site intermediate (By similarity) (152 aa)
AMPD3adenosine monophosphate deaminase 3; AMP deaminase plays a critical role in energy metabolism (776 aa)
PDE7Aphosphodiesterase 7A; Hydrolyzes the second messenger cAMP, which is a key regulator of many important physiological processes. May have a role in muscle signal transduction (482 aa)
PNPT1polyribonucleotide nucleotidyltransferase 1; RNA-binding protein implicated in numerous RNA metabolic processes. Hydrolyzes single-stranded polyribonucleotides processively in the 3’-to-5’ direction. Mitochondrial intermembrane factor with RNA-processing exoribonulease activity. Component of the mitochondrial degradosome (mtEXO) complex, that degrades 3’ overhang double-stranded RNA with a 3’-to-5’ directionality in an ATP-dependent manner. Required for correct processing and polyadenylation of mitochondrial mRNAs. Plays a role as a cytoplasmic RNA import factor that mediates the trans [...] (783 aa)
PDE10Aphosphodiesterase 10A; Plays a role in signal transduction by regulating the intracellular concentration of cyclic nucleotides. Can hydrolyze both cAMP and cGMP, but has higher affinity for cAMP and is more efficient with cAMP as substrate (789 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: medium (45%)