Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
PATL1 PATL1 LSM1 LSM1 LSM3 LSM3 LSM4 LSM4 LSM6 LSM6 SART1 SART1 LSM7 LSM7 WDR69 WDR69 SNRPD3 SNRPD3 TXNL4B TXNL4B SART3 SART3 SNRPD2 SNRPD2 PRPF8 PRPF8 PRPF6 PRPF6 SF3A1 SF3A1 SNRPB SNRPB SNRPN SNRPN PRPF39 PRPF39 ZMAT2 ZMAT2 SF3B2 SF3B2 SNRPA1 SNRPA1 C10orf11 C10orf11 SF3B3 SF3B3 SF3A3 SF3A3 SF3B1 SF3B1 TFIP11 TFIP11
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
SF3A1splicing factor 3a, subunit 1, 120kDa; Subunit of the splicing factor SF3A required for ’A’ complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence (BPS) in pre-mRNA. Sequence independent binding of SF3A/SF3B complex upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA. May also be involved in the assembly of the ’E’ complex (793 aa)
SNRPD3small nuclear ribonucleoprotein D3 polypeptide 18kDa; Appears to function in the U7 snRNP complex that is involved in histone 3’-end processing. Binds to the downstream cleavage product (DCP) of histone pre-mRNA in a U7 snRNP dependent manner (126 aa)
SART3squamous cell carcinoma antigen recognized by T cells 3; Regulates Tat transactivation activity through direct interaction. May be a cellular factor for HIV-1 gene expression and viral replication (963 aa)
LSM7LSM7 homolog, U6 small nuclear RNA associated (S. cerevisiae); Binds specifically to the 3’-terminal U-tract of U6 snRNA and is probably a component of the spliceosome (103 aa)
SNRPA1small nuclear ribonucleoprotein polypeptide A’; This protein is associated with sn-RNP U2. It helps the A’ protein to bind stem loop IV of U2 snRNA (255 aa)
PRPF6PRP6 pre-mRNA processing factor 6 homolog (S. cerevisiae) (941 aa)
TXNL4Bthioredoxin-like 4B; Essential role in pre-mRNA splicing. Required in cell cycle progression for S/G(2) transition (149 aa)
ZMAT2zinc finger, matrin-type 2 (199 aa)
LSM6LSM6 homolog, U6 small nuclear RNA associated (S. cerevisiae); Component of LSm protein complexes, which are involved in RNA processing and may function in a chaperone-like manner, facilitating the efficient association of RNA processing factors with their substrates. Component of the cytoplasmic LSM1-LSM7 complex, which is thought to be involved in mRNA degradation by activating the decapping step in the 5’-to-3’ mRNA decay pathway. Component of the nuclear LSM2-LSM8 complex, which is involved in splicing of nuclear mRNAs. LSM2-LSM8 associates with multiple snRNP complexes containing [...] (80 aa)
PATL1protein associated with topoisomerase II homolog 1 (yeast); RNA-binding protein involved in deadenylation-dependent decapping of mRNAs, leading to the degradation of mRNAs. Acts as a scaffold protein that connects deadenylation and decapping machinery. Required for cytoplasmic mRNA processing body (P-body) assembly. In case of infection, required for translation and replication of hepatitis C virus (HCV) (770 aa)
LSM3LSM3 homolog, U6 small nuclear RNA associated (S. cerevisiae); Binds specifically to the 3’-terminal U-tract of U6 snRNA (102 aa)
PRPF8PRP8 pre-mRNA processing factor 8 homolog (S. cerevisiae); Functions as a scaffold that mediates the ordered assembly of spliceosomal proteins and snRNAs. Required for the assembly of the U4/U6-U5 tri-snRNP complex. Functions as scaffold that positions spliceosomal U2, U5 and U6 snRNAs at splice sites on pre-mRNA substrates, so that splicing can occur. Interacts with both the 5’ and the 3’ splice site (2335 aa)
SF3B3splicing factor 3b, subunit 3, 130kDa; Subunit of the splicing factor SF3B required for ’A’ complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence (BPS) in pre-mRNA. Sequence independent binding of SF3A/SF3B complex upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA. May also be involved in the assembly of the ’E’ complex. Belongs also to the minor U12-dependent spliceosome, which is involved in the splicing of rare class of nuclear pre-mRNA intron (1217 aa)
SNRPNsmall nuclear ribonucleoprotein polypeptide N; May be involved in tissue-specific alternative RNA processing events (240 aa)
SART1squamous cell carcinoma antigen recognized by T cells; Plays a role in mRNA splicing as a component of the U4/U6-U5 tri-snRNP, one of the building blocks of the spliceosome. May also bind to DNA (800 aa)
LSM1LSM1 homolog, U6 small nuclear RNA associated (S. cerevisiae); Plays a role in replication-dependent histone mRNA degradation. Binds specifically to the 3’-terminal U-tract of U6 snRNA (133 aa)
WDR69WD repeat domain 69; May play a role in axonemal outer row dynein assembly (By similarity) (415 aa)
SF3B2splicing factor 3b, subunit 2, 145kDa; Subunit of the splicing factor SF3B required for ’A’ complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence (BPS) in pre-mRNA. Sequence independent binding of SF3A/SF3B complex upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA. May also be involved in the assembly of the ’E’ complex. Belongs also to the minor U12-dependent spliceosome, which is involved in the splicing of rare class of nuclear pre-mRNA intron (895 aa)
SF3B1splicing factor 3b, subunit 1, 155kDa; Subunit of the splicing factor SF3B required for ’A’ complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence (BPS) in pre-mRNA. Sequence independent binding of SF3A/SF3B complex upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA. May also be involved in the assembly of the ’E’ complex. Belongs also to the minor U12-dependent spliceosome, which is involved in the splicing of rare class of nuclear pre-mRNA intron (1304 aa)
SNRPD2small nuclear ribonucleoprotein D2 polypeptide 16.5kDa; Required for pre-mRNA splicing. Required for snRNP biogenesis (By similarity) (118 aa)
PRPF39PRP39 pre-mRNA processing factor 39 homolog (S. cerevisiae); Involved in pre-mRNA splicing (By similarity) (669 aa)
C10orf11chromosome 10 open reading frame 11 (198 aa)
SF3A3splicing factor 3a, subunit 3, 60kDa; Subunit of the splicing factor SF3A required for ’A’ complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence (BPS) in pre-mRNA. Sequence independent binding of SF3A/SF3B complex upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA. May also be involved in the assembly of the ’E’ complex (501 aa)
TFIP11tuftelin interacting protein 11; May play a role in the differentiation of ameloblasts and odontoblasts or in the forming of the enamel extracellular matrix. May also be involved in pre-mRNA splicing (By similarity) (837 aa)
SNRPBsmall nuclear ribonucleoprotein polypeptides B and B1; Appears to function in the U7 snRNP complex that is involved in histone 3’-end processing. Associated with snRNP U1, U2, U4/U6 and U5. May have a functional role in the pre-mRNA splicing or in snRNP structure. Binds to the downstream cleavage product (DCP) of histone pre-mRNA in a U7 snRNP dependent manner (By similarity) (240 aa)
LSM4LSM4 homolog, U6 small nuclear RNA associated (S. cerevisiae); Binds specifically to the 3’-terminal U-tract of U6 snRNA (139 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: low (20%)