Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
DHDH DHDH EPHX1 EPHX1 GSTK1 GSTK1 MGST2 MGST2 GSTA1 GSTA1 CYP3A5 CYP3A5 GSTO1 GSTO1 GSTM3 GSTM3 CYP3A4 CYP3A4 GSTM4 GSTM4 GSTA3 GSTA3 MGST1 MGST1 CYP1A2 CYP1A2 CYP1B1 CYP1B1 GSTT1 GSTT1 GSTT2B GSTT2B GSTA5 GSTA5 GSTM5 GSTM5 GSTM1 GSTM1 CYP1A1 CYP1A1 CYP2S1 CYP2S1 GSTO2 GSTO2 MGST3 MGST3 GSTA4 GSTA4 GSTP1 GSTP1 GSTM2 GSTM2
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
MGST1microsomal glutathione S-transferase 1; Conjugation of reduced glutathione to a wide number of exogenous and endogenous hydrophobic electrophiles. Has a wide substrate specificity (155 aa)
GSTA3glutathione S-transferase alpha 3; Conjugation of reduced glutathione to a wide number of exogenous and endogenous hydrophobic electrophiles. Catalyzes isomerization reactions that contribute to the biosynthesis of steroid hormones. Efficiently catalyze obligatory double-bond isomerizations of delta(5)-androstene-3,17-dione and delta(5)- pregnene-3,20-dione, precursors to testosterone and progesterone, respectively (222 aa)
DHDHdihydrodiol dehydrogenase (dimeric) (334 aa)
CYP3A5cytochrome P450, family 3, subfamily A, polypeptide 5; Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics (502 aa)
GSTM2glutathione S-transferase mu 2 (muscle); Conjugation of reduced glutathione to a wide number of exogenous and endogenous hydrophobic electrophiles (218 aa)
GSTT1glutathione S-transferase theta 1; Conjugation of reduced glutathione to a wide number of exogenous and endogenous hydrophobic electrophiles. Acts on 1,2- epoxy-3-(4-nitrophenoxy)propane, phenethylisothiocyanate 4- nitrobenzyl chloride and 4-nitrophenethyl bromide. Displays glutathione peroxidase activity with cumene hydroperoxide (240 aa)
GSTM5glutathione S-transferase mu 5; Conjugation of reduced glutathione to a wide number of exogenous and endogenous hydrophobic electrophiles (218 aa)
GSTM3glutathione S-transferase mu 3 (brain); Conjugation of reduced glutathione to a wide number of exogenous and endogenous hydrophobic electrophiles. May govern uptake and detoxification of both endogenous compounds and xenobiotics at the testis and brain blood barriers (225 aa)
CYP1B1cytochrome P450, family 1, subfamily B, polypeptide 1; Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics (543 aa)
MGST2microsomal glutathione S-transferase 2; Can catalyze the production of LTC4 from LTA4 and reduced glutathione. Can catalyze the conjugation of 1-chloro-2,4- dinitrobenzene with reduced glutathione (147 aa)
EPHX1epoxide hydrolase 1, microsomal (xenobiotic) (455 aa)
GSTA5glutathione S-transferase alpha 5 (222 aa)
GSTT2Bglutathione S-transferase theta 2B (gene/pseudogene); Conjugation of reduced glutathione to a wide number of exogenous and endogenous hydrophobic electrophiles. Has a sulfatase activity (244 aa)
CYP2S1cytochrome P450, family 2, subfamily S, polypeptide 1; Has a potential importance for extrahepatic xenobiotic metabolism (504 aa)
GSTM1glutathione S-transferase mu 1; Conjugation of reduced glutathione to a wide number of exogenous and endogenous hydrophobic electrophiles (218 aa)
GSTA1glutathione S-transferase alpha 1; Conjugation of reduced glutathione to a wide number of exogenous and endogenous hydrophobic electrophiles (222 aa)
CYP3A4cytochrome P450, family 3, subfamily A, polypeptide 4; Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It performs a variety of oxidation reactions (e.g. caffeine 8-oxidation, omeprazole sulphoxidation, midazolam 1’-hydroxylation and midazolam 4- hydroxylation) of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Acts as a 1,8-cineole 2- exo-monooxygenase. The enzyme also hydroxylates etoposide (503 aa)
CYP1A2cytochrome P450, family 1, subfamily A, polypeptide 2; Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Most active in catalyzing 2-hydroxylation. Caffeine is metabolized primarily by cytochrome CYP1A2 in the liver through an initial N3-demethylation. Also acts in the metabolism of aflatoxin B1 and acetaminophen. Participates in the bioactivation of carcinogenic aromatic a [...] (516 aa)
GSTO2glutathione S-transferase omega 2; Exhibits glutathione-dependent thiol transferase activity. Has high dehydroascorbate reductase activity and may contribute to the recycling of ascorbic acid. Participates in the biotransformation of inorganic arsenic and reduces monomethylarsonic acid (MMA) (243 aa)
MGST3microsomal glutathione S-transferase 3; Also functions as a glutathione peroxidase (152 aa)
GSTO1glutathione S-transferase omega 1; Exhibits glutathione-dependent thiol transferase and dehydroascorbate reductase activities. Has S-(phenacyl)glutathione reductase activity. Has also glutathione S-transferase activity. Participates in the biotransformation of inorganic arsenic and reduces monomethylarsonic acid (MMA) and dimethylarsonic acid (241 aa)
GSTM4glutathione S-transferase mu 4; Conjugation of reduced glutathione to a wide number of exogenous and endogenous hydrophobic electrophiles. Active on 1- chloro-2,4-dinitrobenzene (218 aa)
GSTA4glutathione S-transferase alpha 4; Conjugation of reduced glutathione to a wide number of exogenous and endogenous hydrophobic electrophiles. This isozyme has a high catalytic efficiency with 4-hydroxyalkenals such as 4- hydroxynonenal (4-HNE) (222 aa)
CYP1A1cytochrome P450, family 1, subfamily A, polypeptide 1; Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics (512 aa)
GSTP1glutathione S-transferase pi 1; Conjugation of reduced glutathione to a wide number of exogenous and endogenous hydrophobic electrophiles. Regulates negatively CDK5 activity via p25/p35 translocation to prevent neurodegeneration (210 aa)
GSTK1glutathione S-transferase kappa 1; Significant glutathione conjugating activity is found only with the model substrate, 1-chloro-2,4-dinitrobenzene (CDNB) (282 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: low (37%)