Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
TXNL1 TXNL1 CSE1L CSE1L UBR1 UBR1 URM1 URM1 OLA1 OLA1 UBC UBC TF TF ZNF706 ZNF706 ATP6V1A ATP6V1A ATP6V1B2 ATP6V1B2 INS INS ATP5B ATP5B ATP6V0C ATP6V0C ATP6V1C1 ATP6V1C1 ATP6V1B1 ATP6V1B1 ATP6V1H ATP6V1H INSR INSR ATP6V1E1 ATP6V1E1 ATP6V1D ATP6V1D PPA2 PPA2 ATP6V1F ATP6V1F ATP6V0E2 ATP6V0E2 ATP6V0B ATP6V0B ATP6V0E1 ATP6V0E1 LHPP LHPP PPA1 PPA1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
ATP6V1DATPase, H+ transporting, lysosomal 34kDa, V1 subunit D; Subunit of the peripheral V1 complex of vacuolar ATPase. Vacuolar ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells, thus providing most of the energy required for transport processes in the vacuolar system (By similarity) (247 aa)
TXNL1thioredoxin-like 1; Active thioredoxin with a redox potential of about -250 mV (289 aa)
ATP6V1B1ATPase, H+ transporting, lysosomal 56/58kDa, V1 subunit B1; Non-catalytic subunit of the peripheral V1 complex of vacuolar ATPase. V-ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells (513 aa)
INSinsulin; Insulin decreases blood glucose concentration. It increases cell permeability to monosaccharides, amino acids and fatty acids. It accelerates glycolysis, the pentose phosphate cycle, and glycogen synthesis in liver (By similarity) (110 aa)
ATP6V1E1ATPase, H+ transporting, lysosomal 31kDa, V1 subunit E1; Subunit of the peripheral V1 complex of vacuolar ATPase essential for assembly or catalytic function. V-ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells (226 aa)
ATP5BATP synthase, H+ transporting, mitochondrial F1 complex, beta polypeptide; Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is couple [...] (529 aa)
CSE1LCSE1 chromosome segregation 1-like (yeast) (971 aa)
ATP6V1AATPase, H+ transporting, lysosomal 70kDa, V1 subunit A; Catalytic subunit of the peripheral V1 complex of vacuolar ATPase. V-ATPase vacuolar ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells (617 aa)
ATP6V1B2ATPase, H+ transporting, lysosomal 56/58kDa, V1 subunit B2; Non-catalytic subunit of the peripheral V1 complex of vacuolar ATPase. V-ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells (511 aa)
OLA1Obg-like ATPase 1 (396 aa)
UBR1ubiquitin protein ligase E3 component n-recognin 1; E3 ubiquitin-protein ligase which is a component of the N-end rule pathway. Recognizes and binds to proteins bearing specific N-terminal residues that are destabilizing according to the N-end rule, leading to their ubiquitination and subsequent degradation. May be involved in pancreatic homeostasis. Binds leucine and is a negative regulator of the leucine-mTOR signaling pathway, thereby controlling cell growth (1749 aa)
INSRinsulin receptor; Receptor tyrosine kinase which mediates the pleiotropic actions of insulin. Binding of insulin leads to phosphorylation of several intracellular substrates, including, insulin receptor substrates (IRS1, 2, 3, 4), SHC, GAB1, CBL and other signaling intermediates. Each of these phosphorylated proteins serve as docking proteins for other signaling proteins that contain Src- homology-2 domains (SH2 domain) that specifically recognize different phosphotyrosines residues, including the p85 regulatory subunit of PI3K and SHP2. Phosphorylation of IRSs proteins lead to the act [...] (1382 aa)
ZNF706zinc finger protein 706 (76 aa)
ATP6V0CATPase, H+ transporting, lysosomal 16kDa, V0 subunit c; Proton-conducting pore forming subunit of the membrane integral V0 complex of vacuolar ATPase. V-ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells (155 aa)
PPA2pyrophosphatase (inorganic) 2 (334 aa)
UBCubiquitin C (685 aa)
ATP6V1HATPase, H+ transporting, lysosomal 50/57kDa, V1 subunit H; Subunit of the peripheral V1 complex of vacuolar ATPase. Subunit H activates the ATPase activity of the enzyme and couples ATPase activity to proton flow. Vacuolar ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells, thus providing most of the energy required for transport processes in the vacuolar system (By similarity). Involved in the endocytosis mediated by clathrin-coated pits, required for the formation of endosomes (483 aa)
LHPPphospholysine phosphohistidine inorganic pyrophosphate phosphatase; Phosphatase that hydrolyzes imidodiphosphate, 3- phosphohistidine and 6-phospholysine. Has broad substrate specificity and can also hydrolyze inorganic diphosphate, but with lower efficiency (By similarity) (270 aa)
PPA1pyrophosphatase (inorganic) 1 (289 aa)
ATP6V1C1ATPase, H+ transporting, lysosomal 42kDa, V1 subunit C1; Subunit of the peripheral V1 complex of vacuolar ATPase. Subunit C is necessary for the assembly of the catalytic sector of the enzyme and is likely to have a specific function in its catalytic activity. V-ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells (382 aa)
TFtransferrin; Transferrins are iron binding transport proteins which can bind two Fe(3+) ions in association with the binding of an anion, usually bicarbonate. It is responsible for the transport of iron from sites of absorption and heme degradation to those of storage and utilization. Serum transferrin may also have a further role in stimulating cell proliferation (698 aa)
ATP6V0E2ATPase, H+ transporting V0 subunit e2 (213 aa)
URM1ubiquitin related modifier 1; Acts as a sulfur carrier required for 2-thiolation of mcm(5)S(2)U at tRNA wobble positions of tRNA(Lys), tRNA(Glu) and tRNA(Gln). Serves as sulfur donor in tRNA 2-thiolation reaction by thiocarboxylated (-COSH) at its C-terminus by MOCS3. The sulfur is then transferred to tRNA to form 2-thiolation of mcm(5)S(2)U. May also act as an ubiquitin-like protein that is covalently conjugated to other proteins; the relevance of such function is however unclear in vivo (146 aa)
ATP6V1FATPase, H+ transporting, lysosomal 14kDa, V1 subunit F; Subunit of the peripheral V1 complex of vacuolar ATPase essential for assembly or catalytic function. V-ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells (147 aa)
ATP6V0E1ATPase, H+ transporting, lysosomal 9kDa, V0 subunit e1; Vacuolar ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells (81 aa)
ATP6V0BATPase, H+ transporting, lysosomal 21kDa, V0 subunit b; Proton-conducting pore forming subunit of the membrane integral V0 complex of vacuolar ATPase. V-ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells (205 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: low (32%)