Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
CTBP2 CTBP2 DHFRL1 DHFRL1 TYMS TYMS ALDH1L2 ALDH1L2 CTBP1 CTBP1 FTCD FTCD ATIC ATIC PSPH PSPH DHFR DHFR MTFMT MTFMT SHMT1 SHMT1 MTHFD2 MTHFD2 SHMT2 SHMT2 MTR MTR PHGDH PHGDH MTHFD1 MTHFD1 MTHFD1L MTHFD1L AMT AMT GLDC GLDC HSPA8 HSPA8 MTHFD2L MTHFD2L ALDH1L1 ALDH1L1 DLD DLD MTHFR MTHFR GCSH GCSH
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
DLDdihydrolipoamide dehydrogenase; Lipoamide dehydrogenase is a component of the glycine cleavage system as well as of the alpha-ketoacid dehydrogenase complexes. Involved in the hyperactivation of spermatazoa during capacitation and in the spermatazoal acrosome reaction (509 aa)
MTFMTmitochondrial methionyl-tRNA formyltransferase; Formylates methionyl-tRNA in mitochondria. A single tRNA(Met) gene gives rise to both an initiator and an elongator species via an unknown mechanism (By similarity) (389 aa)
HSPA8heat shock 70kDa protein 8; Acts as a repressor of transcriptional activation. Inhibits the transcriptional coactivator activity of CITED1 on Smad-mediated transcription. Chaperone. Component of the PRP19- CDC5L complex that forms an integral part of the spliceosome and is required for activating pre-mRNA splicing. May have a scaffolding role in the spliceosome assembly as it contacts all other components of the core complex (646 aa)
ATIC5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase; Bifunctional enzyme that catalyzes 2 steps in purine biosynthesis (592 aa)
ALDH1L2aldehyde dehydrogenase 1 family, member L2 (923 aa)
AMTaminomethyltransferase; The glycine cleavage system catalyzes the degradation of glycine (By similarity) (403 aa)
PSPHphosphoserine phosphatase; Catalyzes the last step in the biosynthesis of serine from carbohydrates. The reaction mechanism proceeds via the formation of a phosphoryl-enzyme intermediates (225 aa)
CTBP1C-terminal binding protein 1; Involved in controlling the equilibrium between tubular and stacked structures in the Golgi complex. Functions in brown adipose tissue (BAT) differentiation. Corepressor targeting diverse transcription regulators such as GLIS2. Has dehydrogenase activity (440 aa)
FTCDformiminotransferase cyclodeaminase; Folate-dependent enzyme, that displays both transferase and deaminase activity. Serves to channel one-carbon units from formiminoglutamate to the folate pool (541 aa)
CTBP2C-terminal binding protein 2; Corepressor targeting diverse transcription regulators. Functions in brown adipose tissue (BAT) differentiation (By similarity) (985 aa)
TYMSthymidylate synthetase; Contributes to the de novo mitochondrial thymidylate biosynthesis pathway (313 aa)
SHMT1serine hydroxymethyltransferase 1 (soluble); Interconversion of serine and glycine (By similarity) (483 aa)
DHFRL1dihydrofolate reductase-like 1; Key enzyme in folate metabolism. Contributes to the de novo mitochondrial thymidylate biosynthesis pathway. Required to prevent uracil accumulation in mtDNA. Binds its own mRNA and that of DHFR (187 aa)
GCSHglycine cleavage system protein H (aminomethyl carrier); The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein (173 aa)
SHMT2serine hydroxymethyltransferase 2 (mitochondrial); Contributes to the de novo mitochondrial thymidylate biosynthesis pathway. Required to prevent uracil accumulation in mtDNA. Interconversion of serine and glycine. Associates with mitochondrial DNA (504 aa)
MTR5-methyltetrahydrofolate-homocysteine methyltransferase; Catalyzes the transfer of a methyl group from methyl- cobalamin to homocysteine, yielding enzyme-bound cob(I)alamin and methionine. Subsequently, remethylates the cofactor using methyltetrahydrofolate (By similarity) (1265 aa)
MTHFD1Lmethylenetetrahydrofolate dehydrogenase (NADP+ dependent) 1-like; May provide the missing metabolic reaction required to link the mitochondria and the cytoplasm in the mammalian model of one-carbon folate metabolism in embryonic an transformed cells complementing thus the enzymatic activities of MTHFD2 (By similarity) (978 aa)
PHGDHphosphoglycerate dehydrogenase (533 aa)
MTHFRmethylenetetrahydrofolate reductase (NAD(P)H); Catalyzes the conversion of 5,10- methylenetetrahydrofolate to 5-methyltetrahydrofolate, a co- substrate for homocysteine remethylation to methionine (656 aa)
GLDCglycine dehydrogenase (decarboxylating); The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein (1020 aa)
ALDH1L1aldehyde dehydrogenase 1 family, member L1 (902 aa)
MTHFD2methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 2, methenyltetrahydrofolate cyclohydrolase (350 aa)
MTHFD2Lmethylenetetrahydrofolate dehydrogenase (NADP+ dependent) 2-like (347 aa)
DHFRdihydrofolate reductase; Key enzyme in folate metabolism. Contributes to the de novo mitochondrial thymidylate biosynthesis pathway. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis. Binds its own mRNA and that of DHFRL1 (187 aa)
MTHFD1methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 1, methenyltetrahydrofolate cyclohydrolase, formyltetrahydrofolate synthetase (935 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: medium (42%)