Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
SRSF9 SRSF9 HNRNPL HNRNPL NUP155 NUP155 SRSF6 SRSF6 PABPN1 PABPN1 CPSF3 CPSF3 AAAS AAAS POLR2C POLR2C NUP210 NUP210 RBM8A RBM8A UPF3B UPF3B RNPS1 RNPS1 MAGOH MAGOH EIF4A3 EIF4A3 WIBG WIBG UPF1 UPF1 RPL6 RPL6 RPS16 RPS16 UPF2 UPF2 RPL36 RPL36 RPL35 RPL35 SMG5 SMG5 CASC3 CASC3 RPL18A RPL18A RPS4Y1 RPS4Y1 RPL19 RPL19
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
RPL6ribosomal protein L6; Specifically binds to domain C of the Tax-responsive enhancer element in the long terminal repeat of HTLV-I (288 aa)
AAASachalasia, adrenocortical insufficiency, alacrimia; Plays a role in the normal development of the peripheral and central nervous system (546 aa)
PABPN1poly(A) binding protein, nuclear 1; Involved in the 3’-end formation of mRNA precursors (pre-mRNA) by the addition of a poly(A) tail of 200-250 nt to the upstream cleavage product. Stimulates poly(A) polymerase (PAPOLA) conferring processivity on the poly(A) tail elongation reaction and controls also the poly(A) tail length. Increases the affinity of poly(A) polymerase for RNA. Is also present at various stages of mRNA metabolism including nucleocytoplasmic trafficking and nonsense-mediated decay (NMD) of mRNA. Cooperates with SKIP to synergistically activate E-box-mediated transcripti [...] (306 aa)
POLR2Cpolymerase (RNA) II (DNA directed) polypeptide C, 33kDa; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase II which synthesizes mRNA precursors and many functional non-coding RNAs. Pol II is the central component of the basal RNA polymerase II transcription machinery. It is composed of mobile elements that move relative to each other. RPB3 is part of the core element with the central large cleft and the clamp element that moves to open and close the cleft (By similarity) (275 aa)
HNRNPLheterogeneous nuclear ribonucleoprotein L; This protein is a component of the heterogeneous nuclear ribonucleoprotein (hnRNP) complexes which provide the substrate for the processing events that pre-mRNAs undergo before becoming functional, translatable mRNAs in the cytoplasm. Is associated with most nascent transcripts including those of the landmark giant loops of amphibian lampbrush chromosomes. Associates, together with APEX1, to the negative calcium responsive element (nCaRE) B2 of the APEX2 promoter (589 aa)
RPL18Aribosomal protein L18a (176 aa)
RPL19ribosomal protein L19 (196 aa)
SRSF9serine/arginine-rich splicing factor 9; Plays a role in constitutive splicing and can modulate the selection of alternative splice sites. Represses the splicing of MAPT/Tau exon 10 (221 aa)
NUP155nucleoporin 155kDa; Essential component of nuclear pore complex. Nucleoporins may be involved both in binding and translocating proteins during nucleocytoplasmic transport (By similarity) (1391 aa)
CPSF3cleavage and polyadenylation specific factor 3, 73kDa; Component of the cleavage and polyadenylation specificity factor (CPSF) complex that play a key role in pre-mRNA 3’-end formation, recognizing the AAUAAA signal sequence and interacting with poly(A) polymerase and other factors to bring about cleavage and poly(A) addition. Has endonuclease activity, and functions as mRNA 3’-end-processing endonuclease. Also involved in the histone 3’-end pre-mRNA processing. U7 snRNP- dependent protein that induces both the 3’-endoribonucleolytic cleavage of histone pre-mRNAs and acts as a 5’ to 3’ [...] (684 aa)
SRSF6serine/arginine-rich splicing factor 6; Plays a role in constitutive splicing and can modulate the selection of alternative splice sites. Represses the splicing of MAPT/Tau exon 10 (344 aa)
RPS4Y1ribosomal protein S4, Y-linked 1 (263 aa)
RPS16ribosomal protein S16 (146 aa)
RPL36ribosomal protein L36 (105 aa)
NUP210nucleoporin 210kDa; Nucleoporin essential for nuclear pore assembly and fusion, nuclear pore spacing, as well as structural integrity (1887 aa)
RPL35ribosomal protein L35 (123 aa)
UPF1UPF1 regulator of nonsense transcripts homolog (yeast); RNA-dependent helicase and ATPase required for nonsense- mediated decay (NMD) of mRNAs containing premature stop codons. Is recruited to mRNAs upon translation termination and undergoes a cycle of phosphorylation and dephosphorylation; its phosphorylation appears to be a key step in NMD. Recruited by release factors to stalled ribosomes together with the SMG1C protein kinase complex to form the transient SURF (SMG1-UPF1-eRF1- eRF3) complex. In EJC-dependent NMD, the SURF complex associates with the exon junction complex (EJC) (loc [...] (1118 aa)
CASC3cancer susceptibility candidate 3; Component of a splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junction on mRNAs. The EJC is a dynamic structure consisting of a few core proteins and several more peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. Core components of the EJC, that remains bound to spliced mRNAs throughout all stages of mRNA metabolism, functions to mark the position of the exon-exon junction in the mature mRNA and thereby influence [...] (703 aa)
EIF4A3eukaryotic translation initiation factor 4A3; ATP-dependent RNA helicase. Component of a splicing- dependent multiprotein exon junction complex (EJC) deposited at splice junction on mRNAs. The EJC is a dynamic structure consisting of a few core proteins and several more peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. Core components of the EJC, that remains bound to spliced mRNAs throughout all stages of mRNA metabolism, functions to mark the position of the exon-exon junction [...] (411 aa)
UPF3BUPF3 regulator of nonsense transcripts homolog B (yeast); Involved in nonsense-mediated decay (NMD) of mRNAs containing premature stop codons by associating with the nuclear exon junction complex (EJC) and serving as link between the EJC core and NMD machinery. Recruits UPF2 at the cytoplasmic side of the nuclear envelope and the subsequent formation of an UPF1-UPF2- UPF3 surveillance complex (including UPF1 bound to release factors at the stalled ribosome) is believed to activate NMD. In cooperation with UPF2 stimulates both ATPase and RNA helicase activities of UPF1. Binds spliced mR [...] (483 aa)
RNPS1RNA binding protein S1, serine-rich domain (305 aa)
RBM8ARNA binding motif protein 8A (174 aa)
UPF2UPF2 regulator of nonsense transcripts homolog (yeast) (1272 aa)
SMG5smg-5 homolog, nonsense mediated mRNA decay factor (C. elegans); Plays a role in nonsense-mediated mRNA decay. Does not have RNase activity by itself. Promotes dephosphorylation of UPF1. Together with SMG7 is thought to provide a link to the mRNA degradation machinery involving exonucleolytic pathways, and to serve as an adapter for UPF1 to protein phosphatase 2A (PP2A), thereby triggering UPF1 dephosphorylation. Necessary for TERT activity (1016 aa)
MAGOHmago-nashi homolog, proliferation-associated (Drosophila); Component of a splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junction on mRNAs. The EJC is a dynamic structure consisting of a few core proteins and several more peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. Core components of the EJC, that remains bound to spliced mRNAs throughout all stages of mRNA metabolism, functions to mark the position of the exon-exon junction in the mature mR [...] (146 aa)
WIBGwithin bgcn homolog (Drosophila); Key regulator of the exon junction complex (EJC), a multiprotein complex that associates immediately upstream of the exon-exon junction on mRNAs and serves as a positional landmarks for the intron exon structure of genes and directs post- transcriptional processes in the cytoplasm such as mRNA export, nonsense-mediated mRNA decay (NMD) or translation. Acts as a EJC disassembly factor, allowing translation-dependent EJC removal and recycling by disrupting mature EJC from spliced mRNAs. Its association with the 40S ribosomal subunit probably prevents a t [...] (204 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: low (39%)