Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
DGKQ DGKQ DGKI DGKI DGKA DGKA DGKD DGKD DGKE DGKE DGKH DGKH DGKG DGKG AGPAT4 AGPAT4 LCLAT1 LCLAT1 MBOAT1 MBOAT1 AGPAT3 AGPAT3 AGPAT2 AGPAT2 MBOAT2 MBOAT2 PPAP2A PPAP2A PPAP2B PPAP2B AGPAT1 AGPAT1 AGPAT5 AGPAT5 LPIN3 LPIN3 AGPAT9 AGPAT9 AGPAT6 AGPAT6 GPAM GPAM GPAT2 GPAT2 GNPAT GNPAT DAK DAK GPD1L GPD1L ADPRM ADPRM
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
DGKDdiacylglycerol kinase, delta 130kDa; May function as signaling molecule (1214 aa)
AGPAT91-acylglycerol-3-phosphate O-acyltransferase 9; Esterifies acyl-group from acyl-ACP to the sn-1 position of glycerol-3-phosphate, an essential step in glycerolipid biosynthesis. Overexpression activates the mTOR pathway (434 aa)
PPAP2Aphosphatidic acid phosphatase type 2A; Broad-specificity phosphohydrolase that dephosphorylates exogenous bioactive glycerolipids and sphingolipids. Catalyzes the conversion of phosphatidic acid (PA) to diacylglycerol (DG). Pivotal regulator of lysophosphatidic acid (LPA) signaling in the cardiovascular system. Major enzyme responsible of dephosphorylating LPA in platelets, which terminates signaling actions of LPA. May control circulating, and possibly also regulate localized, LPA levels resulting from platelet activation. It has little activity towards ceramide-1-phosphate (C-1-P) an [...] (285 aa)
DGKGdiacylglycerol kinase, gamma 90kDa; Reverses the normal flow of glycerolipid biosynthesis by phosphorylating diacylglycerol back to phosphatidic acid (791 aa)
GPAMglycerol-3-phosphate acyltransferase, mitochondrial; Esterifies acyl-group from acyl-ACP to the sn-1 position of glycerol-3-phosphate, an essential step in glycerolipid biosynthesis (828 aa)
DGKQdiacylglycerol kinase, theta 110kDa; Phosphorylates diacylglycerol (DAG) to generate phosphatidic acid (PA). May regulate the activity of protein kinase C by controlling the balance between these two signaling lipids. Activated in the nucleus in response to alpha-thrombin and nerve growth factor (By similarity). May be involved in cAMP- induced activation of NR5A1 and subsequent steroidogenic gene transcription by delivering PA as ligand for NR5A1. Acts synergistically with NR5A1 on CYP17 transcriptional activity (942 aa)
GPD1Lglycerol-3-phosphate dehydrogenase 1-like; Plays a role in regulating cardiac sodium current; decreased enzymatic activity with resulting increased levels of glycerol 3-phosphate activating the DPD1L-dependent SCN5A phosphorylation pathway, may ultimately lead to decreased sodium current; cardiac sodium current may also be reduced due to alterations of NAD(H) balance induced by DPD1L (351 aa)
DGKEdiacylglycerol kinase, epsilon 64kDa; Highly selective for arachidonate-containing species of diacylglycerol (DAG). May terminate signals transmitted through arachidonoyl-DAG or may contribute to the synthesis of phospholipids with defined fatty acid composition (567 aa)
AGPAT51-acylglycerol-3-phosphate O-acyltransferase 5 (lysophosphatidic acid acyltransferase, epsilon); Converts lysophosphatidic acid (LPA) into phosphatidic acid by incorporating an acyl moiety at the sn-2 position of the glycerol backbone. Acts on LPA containing saturated or unsaturated fatty acids C15-0-C20-4 at the sn-1 position using C18-1-CoA as the acyl donor. Also acts on lysophosphatidylethanolamine using oleoyl-CoA, but not arachidonoyl-CoA, and lysophosphatidylinositol using arachidonoyl-CoA, but not oleoyl-CoA. Activity toward lysophosphatidylglycerol not detectable (364 aa)
DGKIdiacylglycerol kinase, iota (1065 aa)
AGPAT31-acylglycerol-3-phosphate O-acyltransferase 3; Converts lysophosphatidic acid (LPA) into phosphatidic acid by incorporating an acyl moiety at the sn-2 position of the glycerol backbone. Acts on LPA containing saturated or unsaturated fatty acids C16-0-C20-4 at the sn-1 position using C18-1, C20-4 or C18-2-CoA as the acyl donor. Also acts on lysophosphatidylcholine, lysophosphatidylinositol and lysophosphatidylserine using C18-1 or C20-4-CoA (376 aa)
MBOAT2membrane bound O-acyltransferase domain containing 2; Acyltransferase which mediates the conversion of lysophosphatidylethanolamine (1-acyl-sn-glycero-3- phosphoethanolamine or LPE) into phosphatidylethanolamine (1,2- diacyl-sn-glycero-3-phosphoethanolamine or PE) (LPEAT activity). Catalyzes also the acylation of lysophosphatidic acid (LPA) into phosphatidic acid (PA) (LPAAT activity). Has also a very weak lysophosphatidylcholine acyltransferase (LPCAT activity). Prefers oleoyl-CoA as the acyl donor. Lysophospholipid acyltransferases (LPLATs) catalyze the reacylation step of the phosph [...] (520 aa)
LCLAT1lysocardiolipin acyltransferase 1; Acyl-CoA-lysocardiolipin acyltransferase. Possesses both lysophosphatidylinositol acyltransferase (LPIAT) and lysophosphatidylglycerol acyltransferase (LPGAT) activities. Recognizes both monolysocardiolipin and dilysocardiolipin as substrates with a preference for linoleoyl-CoA and oleoyl-CoA as acyl donors. Acts as a remodeling enzyme for cardiolipin, a major membrane polyglycerophospholipid. Converts lysophosphatidic acid (LPA) into phosphatidic acid (PA) with a relatively low activity. Required for establishment of the hematopoietic and endothelial [...] (414 aa)
AGPAT41-acylglycerol-3-phosphate O-acyltransferase 4 (lysophosphatidic acid acyltransferase, delta); Converts lysophosphatidic acid (LPA) into phosphatidic acid by incorporating an acyl moiety at the sn-2 position of the glycerol backbone (By similarity) (378 aa)
MBOAT1membrane bound O-acyltransferase domain containing 1; Acyltransferase which mediates the conversion of lysophosphatidylserine (1-acyl-2-hydroxy-sn-glycero-3-phospho-L- serine or LPS) into phosphatidylserine (1,2-diacyl-sn-glycero-3- phospho-L-serine or PS) (LPSAT activity). Prefers oleoyl-CoA as the acyl donor. Lysophospholipid acyltransferases (LPLATs) catalyze the reacylation step of the phospholipid remodeling pathway also known as the Lands cycle (495 aa)
DGKAdiacylglycerol kinase, alpha 80kDa; Upon cell stimulation converts the second messenger diacylglycerol into phosphatidate, initiating the resynthesis of phosphatidylinositols and attenuating protein kinase C activity (735 aa)
AGPAT11-acylglycerol-3-phosphate O-acyltransferase 1 (lysophosphatidic acid acyltransferase, alpha) (283 aa)
DGKHdiacylglycerol kinase, eta (1220 aa)
GPAT2glycerol-3-phosphate acyltransferase 2, mitochondrial; Esterifies acyl-group from acyl-ACP to the sn-1 position of glycerol-3-phosphate, an essential step in glycerolipid biosynthesis (By similarity) (795 aa)
GNPATglyceronephosphate O-acyltransferase (680 aa)
PPAP2Bphosphatidic acid phosphatase type 2B; Catalyzes the conversion of phosphatidic acid (PA) to diacylglycerol (DG). In addition it hydrolyzes lysophosphatidic acid (LPA), ceramide-1-phosphate (C-1-P) and sphingosine-1- phosphate (S-1-P). The relative catalytic efficiency is LPA = PA > C-1-P > S-1-P. May be involved in cell adhesion and in cell-cell interactions (311 aa)
AGPAT21-acylglycerol-3-phosphate O-acyltransferase 2 (lysophosphatidic acid acyltransferase, beta); Converts lysophosphatidic acid (LPA) into phosphatidic acid by incorporating an acyl moiety at the sn-2 position of the glycerol backbone (278 aa)
LPIN3lipin 3; Regulates fatty acid metabolism. Magnesium-dependent phosphatidate phosphatase enzyme which catalyzes the conversion of phosphatidic acid to diacylglycerol during triglyceride, phosphatidylcholine and phosphatidylethanolamine biosynthesis (By similarity) (851 aa)
ADPRMADP-ribose/CDP-alcohol diphosphatase, manganese-dependent; Hydrolyzes ADP-ribose, IDP-ribose, CDP-glycerol, CDP- choline and CDP-ethanolamine, but not other non-reducing ADP- sugars or CDP-glucose. May be involved in immune cell signaling as suggested by the second-messenger role of ADP-ribose, which activates TRPM2 as a mediator of oxidative/nitrosative stress (By similarity) (342 aa)
DAKdihydroxyacetone kinase 2 homolog (S. cerevisiae); Catalyzes both the phosphorylation of dihydroxyacetone and of glyceraldehyde, and the splitting of ribonucleoside diphosphate-X compounds among which FAD is the best substrate (575 aa)
AGPAT61-acylglycerol-3-phosphate O-acyltransferase 6 (lysophosphatidic acid acyltransferase, zeta); Esterifies acyl-group from acyl-ACP to the sn-1 position of glycerol-3-phosphate, an essential step in glycerolipid biosynthesis. Active against both saturated and unsaturated long- chain fatty acyl-CoAs (456 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: low (27%)