Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
DHRS7C DHRS7C DECR2 DECR2 SDHA SDHA HSD17B14 HSD17B14 HSD11B1L HSD11B1L HSD17B1 HSD17B1 MT-CO2 MT-CO2 SDR16C5 SDR16C5 MT-ND3 MT-ND3 NDUFS7 NDUFS7 DHRS4 DHRS4 MT-CYB MT-CYB HPGD HPGD RDH8 RDH8 DECR1 DECR1 NDUFAB1 NDUFAB1 NMRAL1 NMRAL1 NDUFA12 NDUFA12 C2orf81 C2orf81 DHRS13 DHRS13 HSDL2 HSDL2 RDH13 RDH13 DHRS2 DHRS2 ENSG00000267149 ENSG00000267149 ENSG00000258466 ENSG00000258466 DHRS1 DHRS1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
NDUFAB1NADH dehydrogenase (ubiquinone) 1, alpha/beta subcomplex, 1, 8kDa; Carrier of the growing fatty acid chain in fatty acid biosynthesis in mitochondria. Accessory and non-catalytic subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), which functions in the transfer of electrons from NADH to the respiratory chain (By similarity) (156 aa)
RDH8retinol dehydrogenase 8 (all-trans); Retinol dehydrogenase with a clear preference for NADP. Converts all-trans-retinal to all-trans-retinol. May play a role in the regeneration of visual pigment at high light intensity (By similarity) (311 aa)
DECR22,4-dienoyl CoA reductase 2, peroxisomal; Auxiliary enzyme of beta-oxidation. Participates in the degradation of unsaturated fatty enoyl-CoA esters having double bonds in both even- and odd-numbered positions in peroxisome. Catalyzes the NADP-dependent reduction of 2,4-dienoyl-CoA to yield trans-3-enoyl-CoA. Has activity towards short and medium chain 2,4-dienoyl-CoAs, but also towards 2,4,7,10,13,16,19- docosaheptaenoyl-CoA, suggesting that it does not constitute a rate limiting step in the peroxisomal degradation of docosahexaenoic acid (292 aa)
DECR12,4-dienoyl CoA reductase 1, mitochondrial; Auxiliary enzyme of beta-oxidation. It participates in the metabolism of unsaturated fatty enoyl-CoA esters having double bonds in both even- and odd-numbered positions. Catalyzes the NADP-dependent reduction of 2,4-dienoyl-CoA to yield trans-3- enoyl-CoA (335 aa)
NDUFS7NADH dehydrogenase (ubiquinone) Fe-S protein 7, 20kDa (NADH-coenzyme Q reductase); Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity) (213 aa)
HSD17B14hydroxysteroid (17-beta) dehydrogenase 14; Has NAD-dependent 17-beta-hydroxysteroid dehydrogenase activity. Converts oestradiol to oestrone. The physiological substrate is not known. Acts on oestradiol and 5-androstene-3- beta,17-beta-diol (in vitro) (270 aa)
SDHAsuccinate dehydrogenase complex, subunit A, flavoprotein (Fp); Flavoprotein (FP) subunit of succinate dehydrogenase (SDH) that is involved in complex II of the mitochondrial electron transport chain and is responsible for transferring electrons from succinate to ubiquinone (coenzyme Q). Can act as a tumor suppressor (664 aa)
NMRAL1NmrA-like family domain containing 1; Redox sensor protein. Undergoes restructuring and subcellular redistribution in response to changes in intracellular NADPH/NADP(+) levels. At low NADPH concentrations the protein is found mainly as a monomer, and binds argininosuccinate synthase (ASS1), the enzyme involved in nitric oxide synthesis. Association with ASS1 impairs its activity and reduces the production of nitric oxide, which subsecuently prevents apoptosis. Under normal NADPH concentrations, the protein is found as a dimer and hides the binding site for ASS1. The homodimer binds one [...] (299 aa)
DHRS1dehydrogenase/reductase (SDR family) member 1 (313 aa)
C2orf81chromosome 2 open reading frame 81 (588 aa)
HPGDhydroxyprostaglandin dehydrogenase 15-(NAD); Prostaglandin inactivation. Contributes to the regulation of events that are under the control of prostaglandin levels. Catalyzes the NAD-dependent dehydrogenation of lipoxin A4 to form 15-oxo-lipoxin A4. Inhibits in vivo proliferation of colon cancer cells (266 aa)
SDR16C5short chain dehydrogenase/reductase family 16C, member 5; Oxidoreductase with strong preference for NAD. Active in both the oxidative and reductive directions. Oxidizes all-trans- retinol in all-trans-retinaldehyde. No activity was detected with 11-cis-retinol or 11-cis-retinaldehyde as substrates with either NAD(+)/NADH or NADP(+)/NADPH (309 aa)
DHRS4dehydrogenase/reductase (SDR family) member 4 (278 aa)
DHRS7Cdehydrogenase/reductase (SDR family) member 7C; Putative oxidoreductase (Potential) (312 aa)
NDUFA12NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 12; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (145 aa)
DHRS2dehydrogenase/reductase (SDR family) member 2; Displays NADPH-dependent dicarbonyl reductase activity in vitro with 3,4-Hexanedione, 2,3-Heptanedione and 1-Phenyl-1,2- propanedione as substrates. No reductase activity is displayed in vitro with steroids, retinoids and sugars as substrates. May inhibit cell replication (300 aa)
MT-CYBmitochondrially encoded cytochrome b; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis (By similarity) (380 aa)
MT-CO2mitochondrially encoded cytochrome c oxidase II; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1- 3 form the functional core of the enzyme complex. Subunit 2 transfers the electrons from cytochrome c via its binuclear copper A center to the bimetallic center of the catalytic subunit 1 (By similarity) (227 aa)
MT-ND3mitochondrially encoded NADH dehydrogenase 3; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity) (115 aa)
DHRS13dehydrogenase/reductase (SDR family) member 13; Putative oxidoreductase (Potential) (377 aa)
HSDL2hydroxysteroid dehydrogenase like 2; Has apparently no steroid dehydrogenase activity (418 aa)
RDH13retinol dehydrogenase 13 (all-trans/9-cis) (331 aa)
HSD11B1Lhydroxysteroid (11-beta) dehydrogenase 1-like (315 aa)
ENSG00000258466Uncharacterized protein (118 aa)
ENSG00000267149annotation not available (204 aa)
HSD17B1hydroxysteroid (17-beta) dehydrogenase 1; Favors the reduction of estrogens and androgens. Also has 20-alpha-HSD activity. Uses preferentially NADH (328 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: medium (44%)