Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
CPSF2 CPSF2 CDC40 CDC40 SRSF7 SRSF7 SRSF9 SRSF9 SRSF1 SRSF1 SNRPD1 SNRPD1 U2AF1 U2AF1 SNRPF SNRPF NUP85 NUP85 NUP155 NUP155 NUP210 NUP210 NUPL2 NUPL2 GEMIN6 GEMIN6 NUP205 NUP205 NUP35 NUP35 NUP93 NUP93 EIF4E EIF4E GEMIN5 GEMIN5 NUP37 NUP37 NUP160 NUP160 GEMIN4 GEMIN4 GCKR GCKR UBC UBC SNUPN SNUPN PHAX PHAX NEK6 NEK6
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
SRSF9serine/arginine-rich splicing factor 9; Plays a role in constitutive splicing and can modulate the selection of alternative splice sites. Represses the splicing of MAPT/Tau exon 10 (221 aa)
NUP155nucleoporin 155kDa; Essential component of nuclear pore complex. Nucleoporins may be involved both in binding and translocating proteins during nucleocytoplasmic transport (By similarity) (1391 aa)
NUP85nucleoporin 85kDa; Essential component of the nuclear pore complex (NPC) that seems to be required for NPC assembly and maintenance. As part of the NPC Nup107-160 subcomplex plays a role in RNA export and in tethering NUP98/Nup98 and NUP153 to the nucleus. The Nup107-160 complex seems to be required for spindle assembly during mitosis. NUP85 is required for membrane clustering of CCL2- activated CCR2. Seems to be involved in CCR2-mediated chemotaxis of monocytes and may link activated CCR2 to the phosphatidyl- inositol 3-kinase-Rac-lammellipodium protrusion cascade (656 aa)
NUP37nucleoporin 37kDa; Component of the Nup107-160 subcomplex of the nuclear pore complex (NPC). The Nup107-160 subcomplex is required for the assembly of a functional NPC. The Nup107-160 subcomplex is also required for normal kinetochore microtubule attachment, mitotic progression and chromosome segregation (326 aa)
NUP210nucleoporin 210kDa; Nucleoporin essential for nuclear pore assembly and fusion, nuclear pore spacing, as well as structural integrity (1887 aa)
NUPL2nucleoporin like 2; Required for the export of mRNAs containing poly(A) tails from the nucleus into the cytoplasm. In case of infection by HIV-1, it may participate in the docking of viral Vpr at the nuclear envelope (423 aa)
SRSF1serine/arginine-rich splicing factor 1; Plays a role in preventing exon skipping, ensuring the accuracy of splicing and regulating alternative splicing. Interacts with other spliceosomal components, via the RS domains, to form a bridge between the 5’- and 3’-splice site binding components, U1 snRNP and U2AF. Can stimulate binding of U1 snRNP to a 5’-splice site-containing pre-mRNA. Binds to purine-rich RNA sequences, either the octamer, 5’-RGAAGAAC-3’ (r=A or G) or the decamers, AGGACAGAGC/AGGACGAAGC. Binds preferentially to the 5’- CGAGGCG-3’ motif in vitro. Three copies of the octame [...] (248 aa)
GCKRglucokinase (hexokinase 4) regulator; Inhibits glucokinase by forming an inactive complex with this enzyme (625 aa)
SNRPFsmall nuclear ribonucleoprotein polypeptide F; Appears to function in the U7 snRNP complex that is involved in histone 3’-end processing. Associated with snRNP U1, U2, U4/U6 and U5 (86 aa)
GEMIN6gem (nuclear organelle) associated protein 6; The SMN complex plays an essential role in spliceosomal snRNP assembly in the cytoplasm and is required for pre-mRNA splicing in the nucleus (167 aa)
GEMIN5gem (nuclear organelle) associated protein 5; The SMN complex plays an essential role in spliceosomal snRNP assembly in the cytoplasm and is required for pre-mRNA splicing in the nucleus. GEMIN5 acts as the snRNA-binding protein of the SMN complex (1508 aa)
NUP205nucleoporin 205kDa; Plays a role in the nuclear pore complex (NPC) assembly and/or maintenance. May anchor NUP62 and other nucleoporins, but not NUP153 and TPR, to the NPC (2012 aa)
U2AF1U2 small nuclear RNA auxiliary factor 1; Plays a critical role in both constitutive and enhancer- dependent splicing by mediating protein-protein interactions and protein-RNA interactions required for accurate 3’-splice site selection. Recruits U2 snRNP to the branch point. Directly mediates interactions between U2AF2 and proteins bound to the enhancers and thus may function as a bridge between U2AF2 and the enhancer complex to recruit it to the adjacent intron (240 aa)
NUP35nucleoporin 35kDa; Functions as a component of the nuclear pore complex (NPC). NPC components, collectively referred to as nucleoporins (NUPs). Can play the role of both NPC structural components and of docking or interaction partners for transiently associated nuclear transport factors. May play a role in the association of MAD1 with the NPC (326 aa)
PHAXphosphorylated adaptor for RNA export; A phosphoprotein adapter involved in the XPO1-mediated U snRNA export from the nucleus. Bridge components required for U snRNA export, the cap binding complex (CBC)-bound snRNA on the one hand and the GTPase Ran in its active GTP-bound form together with the export receptor XPO1 on the other. Its phosphorylation in the nucleus is required for U snRNA export complex assembly and export, while its dephosphorylation in the cytoplasm causes export complex disassembly. It is recycled back to the nucleus via the importin alpha/beta heterodimeric import [...] (394 aa)
CPSF2cleavage and polyadenylation specific factor 2, 100kDa; Component of the cleavage and polyadenylation specificity factor (CPSF) complex that play a key role in pre-mRNA 3’-end formation, recognizing the AAUAAA signal sequence and interacting with poly(A) polymerase and other factors to bring about cleavage and poly(A) addition. Involved in the histone 3’ end pre-mRNA processing (782 aa)
SNRPD1small nuclear ribonucleoprotein D1 polypeptide 16kDa; May act as a charged protein scaffold to promote snRNP assembly or strengthen snRNP-snRNP interactions through nonspecific electrostatic contacts with RNA (119 aa)
CDC40cell division cycle 40 homolog (S. cerevisiae); Associates with the spliceosome late in the splicing pathway and may function in the second step of pre-mRNA splicing (579 aa)
SNUPNsnurportin 1; Functions as an U snRNP-specific nuclear import adapter. Involved in the trimethylguanosine (m3G)-cap-dependent nuclear import of U snRNPs. Binds specifically to the terminal m3G-cap U snRNAs (360 aa)
NUP93nucleoporin 93kDa; Plays a role in the nuclear pore complex (NPC) assembly and/or maintenance. May anchor nucleoporins, but not NUP153 and TPR, to the NPC (819 aa)
GEMIN4gem (nuclear organelle) associated protein 4; The SMN complex plays an essential role in spliceosomal snRNP assembly in the cytoplasm and is required for pre-mRNA splicing in the nucleus (1058 aa)
SRSF7serine/arginine-rich splicing factor 7; Required for pre-mRNA splicing. Can also modulate alternative splicing in vitro. Represses the splicing of MAPT/Tau exon 10 (238 aa)
UBCubiquitin C (685 aa)
NEK6NIMA-related kinase 6; Protein kinase which plays an important role in mitotic cell cycle progression. Required for chromosome segregation at metaphase-anaphase transition, robust mitotic spindle formation and cytokinesis. Phosphorylates ATF4, CIR1, PTN, RAD26L, RBBP6, RPS7, RPS6KB1, TRIP4, STAT3 and histones H1 and H3. Phosphorylates KIF11 to promote mitotic spindle formation. Involved in G2/M phase cell cycle arrest induced by DNA damage. Inhibition of activity results in apoptosis. May contribute to tumorigenesis by suppressing p53/TP53-induced cancer cell senescence (347 aa)
NUP160nucleoporin 160kDa; Involved in poly(A)+ RNA transport (1436 aa)
EIF4Eeukaryotic translation initiation factor 4E; Its translation stimulation activity is repressed by binding to the complex CYFIP1-FMR1 (By similarity). Recognizes and binds the 7-methylguanosine-containing mRNA cap during an early step in the initiation of protein synthesis and facilitates ribosome binding by inducing the unwinding of the mRNAs secondary structures. Component of the CYFIP1-EIF4E-FMR1 complex which binds to the mRNA cap and mediates translational repression. In the CYFIP1-EIF4E-FMR1 complex this subunit mediates the binding to the mRNA cap (248 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: low (28%)