Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
PDE10A PDE10A PDE1B PDE1B PDE4A PDE4A PDE4D PDE4D PDE7B PDE7B PDE11A PDE11A ENTPD3 ENTPD3 NT5C2 NT5C2 ADK ADK ENTPD1 ENTPD1 NT5C3 NT5C3 AK8 AK8 AK4 AK4 NT5C1A NT5C1A AK2 AK2 AK1 AK1 PNP PNP AK7 AK7 ENTPD8 ENTPD8 NT5C NT5C NT5E NT5E PDE1A PDE1A PDE4C PDE4C PDE2A PDE2A PDE7A PDE7A PDE3A PDE3A
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
NT5C1A5’-nucleotidase, cytosolic IA; Dephosphorylates the 5’ and 2’(3’)-phosphates of deoxyribonucleotides and has a broad substrate specificity. Helps to regulate adenosine levels in heart during ischemia and hypoxia (368 aa)
NT5C35’-nucleotidase, cytosolic III (336 aa)
PDE1Bphosphodiesterase 1B, calmodulin-dependent; Cyclic nucleotide phosphodiesterase with a dual- specificity for the second messengers cAMP and cGMP, which are key regulators of many important physiological processes. Has a preference for cGMP as a substrate (536 aa)
NT5C5’, 3’-nucleotidase, cytosolic; Dephosphorylates the 5’ and 2’(3’)-phosphates of deoxyribonucleotides, with a preference for dUMP and dTMP, intermediate activity towards dGMP, and low activity towards dCMP and dAMP (201 aa)
NT5E5’-nucleotidase, ecto (CD73); Hydrolyzes extracellular nucleotides into membrane permeable nucleosides. Exhibits AMP-, NAD-, and NMN-nucleosidase activities (574 aa)
AK7adenylate kinase 7; Adenylate kinase involved in maintaining ciliary structure and function (By similarity). Has highest activity toward AMP, and weaker activity toward dAMP, CMP and dCMP (723 aa)
PDE4Aphosphodiesterase 4A, cAMP-specific (886 aa)
PDE11Aphosphodiesterase 11A; Plays a role in signal transduction by regulating the intracellular concentration of cyclic nucleotides cAMP and cGMP. Catalyzes the hydrolysis of both cAMP and cGMP to 5’-AMP and 5’- GMP, respectively (933 aa)
ADKadenosine kinase; ATP dependent phosphorylation of adenosine and other related nucleoside analogs to monophosphate derivatives. Serves as a potential regulator of concentrations of extracellular adenosine and intracellular adenine nucleotides (362 aa)
AK8adenylate kinase 8; Adenylate kinase. Has highest activity toward AMP, and weaker activity toward dAMP, CMP and dCMP (479 aa)
ENTPD3ectonucleoside triphosphate diphosphohydrolase 3; Has a threefold preference for the hydrolysis of ATP over ADP (529 aa)
PDE7Bphosphodiesterase 7B; Hydrolyzes the second messenger cAMP, which is a key regulator of many important physiological processes. May be involved in the control of cAMP-mediated neural activity and cAMP metabolism in the brain (450 aa)
AK4adenylate kinase 4; Involved in maintaining the homeostasis of cellular nucleotides by catalyzing the interconversion of nucleoside phosphates. Efficiently phosphorylates AMP and dAMP using ATP as phosphate donor, but phosphorylates only AMP when using GTP as phosphate donor (223 aa)
PDE1Aphosphodiesterase 1A, calmodulin-dependent (545 aa)
PDE2Aphosphodiesterase 2A, cGMP-stimulated; Cyclic nucleotide phosphodiesterase with a dual- specificity for the second messengers cAMP and cGMP, which are key regulators of many important physiological processes (941 aa)
NT5C25’-nucleotidase, cytosolic II; May have a critical role in the maintenance of a constant composition of intracellular purine/pyrimidine nucleotides in cooperation with other nucleotidases. Preferentially hydrolyzes inosine 5’-monophosphate (IMP) and other purine nucleotides (561 aa)
PDE4Dphosphodiesterase 4D, cAMP-specific (809 aa)
AK2adenylate kinase 2 (239 aa)
PDE4Cphosphodiesterase 4C, cAMP-specific; Hydrolyzes the second messenger cAMP, which is a key regulator of many important physiological processes (712 aa)
PDE3Aphosphodiesterase 3A, cGMP-inhibited; Cyclic nucleotide phosphodiesterase with a dual- specificity for the second messengers cAMP and cGMP, which are key regulators of many important physiological processes (By similarity) (1141 aa)
PNPpurine nucleoside phosphorylase; The purine nucleoside phosphorylases catalyze the phosphorolytic breakdown of the N-glycosidic bond in the beta- (deoxy)ribonucleoside molecules, with the formation of the corresponding free purine bases and pentose-1-phosphate (By similarity) (289 aa)
ENTPD1ectonucleoside triphosphate diphosphohydrolase 1 (522 aa)
ENTPD8ectonucleoside triphosphate diphosphohydrolase 8; Canalicular ectonucleoside NTPDase responsible for the main hepatic NTPDase activity. Ectonucleoside NTPDases catalyze the hydrolysis of gamma- and beta-phosphate residues of nucleotides, playing a central role in concentration of extracellular nucleotides. Has activity toward ATP, ADP, UTP and UDP, but not toward AMP (495 aa)
AK1adenylate kinase 1; Catalyzes the reversible transfer of the terminal phosphate group between ATP and AMP. Plays an important role in cellular energy homeostasis and in adenine nucleotide metabolism (194 aa)
PDE7Aphosphodiesterase 7A; Hydrolyzes the second messenger cAMP, which is a key regulator of many important physiological processes. May have a role in muscle signal transduction (482 aa)
PDE10Aphosphodiesterase 10A; Plays a role in signal transduction by regulating the intracellular concentration of cyclic nucleotides. Can hydrolyze both cAMP and cGMP, but has higher affinity for cAMP and is more efficient with cAMP as substrate (789 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: medium (41%)