Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
TTYH2 TTYH2 SLC26A6 SLC26A6 CLCNKA CLCNKA ANO2 ANO2 BEST3 BEST3 GABRQ GABRQ GABRA5 GABRA5 GABRA4 GABRA4 GABRG3 GABRG3 CLIC2 CLIC2 CLIC4 CLIC4 CLCN1 CLCN1 FXYD1 FXYD1 GLRA4 GLRA4 CLIC5 CLIC5 BEST4 BEST4 GABRE GABRE GABRA2 GABRA2 GABRA3 GABRA3 CLCNKB CLCNKB GABRD GABRD GLRA3 GLRA3 CLIC6 CLIC6 DRD4 DRD4 DRD2 DRD2 DRD3 DRD3
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
DRD4dopamine receptor D4 (419 aa)
CLIC5chloride intracellular channel 5; Can insert into membranes and form poorly selective ion channels that may also transport chloride ions. May play a role in the regulation of transepithelial ion absorption and secretion. Required for normal formation of stereocilia in the inner ear and normal development of the organ of Corti (By similarity). Is required for the development and/or maintenance of the proper glomerular endothelial cell and podocyte architecture (410 aa)
GABRA4gamma-aminobutyric acid (GABA) A receptor, alpha 4; GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel (554 aa)
TTYH2tweety homolog 2 (Drosophila); Probable large-conductance Ca(2+)-activated chloride channel. May play a role in Ca(2+) signal transduction. May be involved in cell proliferation and cell aggregation (534 aa)
GLRA3glycine receptor, alpha 3; The glycine receptor is a neurotransmitter-gated ion channel. Binding of glycine to its receptor increases the chloride conductance and thus produces hyperpolarization (inhibition of neuronal firing) (464 aa)
CLIC6chloride intracellular channel 6; May insert into membranes and form chloride ion channels. May play a critical role in water-secreting cells, possibly through the regulation of chloride ion transport (By similarity) (686 aa)
ANO2anoctamin 2; Calcium-activated chloride channel (CaCC) which may play a role in olfactory signal transduction. Odorant molecules bind to odor-sensing receptors (OSRs), leading to an increase in calcium entry that activates CaCC current which amplifies the depolarization of the OSR cells, ANO2 seems to be the underlying chloride channel involved in this process. May mediate light perception amplification in retina (998 aa)
GABRG3gamma-aminobutyric acid (GABA) A receptor, gamma 3; GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel (467 aa)
BEST3bestrophin 3; Forms calcium-sensitive (By similarity) chloride channels. Permeable to bicarbonate (By similarity) (668 aa)
CLCNKAchloride channel, voltage-sensitive Ka; Voltage-gated chloride channel. Chloride channels have several functions including the regulation of cell volume; membrane potential stabilization, signal transduction and transepithelial transport. May be important in urinary concentrating mechanisms (687 aa)
GABRA5gamma-aminobutyric acid (GABA) A receptor, alpha 5; GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel (462 aa)
CLCN1chloride channel, voltage-sensitive 1; Voltage-gated chloride channel. Chloride channels have several functions including the regulation of cell volume; membrane potential stabilization, signal transduction and transepithelial transport (988 aa)
FXYD1FXYD domain containing ion transport regulator 1; May have a functional role in muscle contraction. Induces a hyperpolarization-activated chloride current when exogenously expressed (92 aa)
GABRA2gamma-aminobutyric acid (GABA) A receptor, alpha 2; GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel (451 aa)
DRD2dopamine receptor D2; Dopamine receptor whose activity is mediated by G proteins which inhibit adenylyl cyclase (By similarity) (443 aa)
CLIC2chloride intracellular channel 2; Can insert into membranes and form chloride ion channels. Channel activity depends on the pH. Membrane insertion seems to be redox-regulated and may occur only under oxydizing conditions. Modulates the activity of RYR2 and inhibits calcium influx (247 aa)
GABRQgamma-aminobutyric acid (GABA) A receptor, theta; GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel (632 aa)
GABRA3gamma-aminobutyric acid (GABA) A receptor, alpha 3; GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel (492 aa)
GABREgamma-aminobutyric acid (GABA) A receptor, epsilon; GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel (506 aa)
BEST4bestrophin 4; Forms calcium-sensitive chloride channels. Permeable to bicarbonate (473 aa)
GLRA4glycine receptor, alpha 4; The glycine receptor is a neurotransmitter-gated ion channel. Binding of glycine to its receptor increases the chloride conductance and thus produces hyperpolarization (inhibition of neuronal firing) (417 aa)
CLIC4chloride intracellular channel 4; Can insert into membranes and form poorly selective ion channels that may also transport chloride ions. Channel activity depends on the pH. Membrane insertion seems to be redox-regulated and may occur only under oxydizing conditions. Promotes cell- surface expression of HRH3. Has alternate cellular functions like a potential role in angiogenesis or in maintaining apical- basolateral membrane polarity during mitosis and cytokinesis. Could also promote endothelial cell proliferation and regulate endothelial morphogenesis (tubulogenesis) (253 aa)
CLCNKBchloride channel, voltage-sensitive Kb; Voltage-gated chloride channel. Chloride channels have several functions including the regulation of cell volume; membrane potential stabilization, signal transduction and transepithelial transport. May be important in urinary concentrating mechanisms (687 aa)
GABRDgamma-aminobutyric acid (GABA) A receptor, delta; GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel (452 aa)
DRD3dopamine receptor D3; Dopamine receptor whose activity is mediated by G proteins which inhibit adenylyl cyclase. Promotes cell proliferation (400 aa)
SLC26A6solute carrier family 26, member 6; Does not seem to be involved in anion transport (759 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: medium (48%)