Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
CHCHD2 CHCHD2 C1QBP C1QBP OXCT1 OXCT1 LUC7L2 LUC7L2 MRPL46 MRPL46 C7orf55 C7orf55 NT5DC2 NT5DC2 ATPAF2 ATPAF2 SNAP29 SNAP29 MRP63 MRP63 ATP5F1 ATP5F1 ATP5E ATP5E ATP5A1 ATP5A1 TMC1 TMC1 PMPCA PMPCA ATP5C1 ATP5C1 ATP5O ATP5O GRPEL2 GRPEL2 ATP5H ATP5H CLPX CLPX PMPCB PMPCB NDUFA8 NDUFA8 NDUFV1 NDUFV1 STOML2 STOML2 CYCS CYCS NDUFAB1 NDUFAB1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
NDUFAB1NADH dehydrogenase (ubiquinone) 1, alpha/beta subcomplex, 1, 8kDa; Carrier of the growing fatty acid chain in fatty acid biosynthesis in mitochondria. Accessory and non-catalytic subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), which functions in the transfer of electrons from NADH to the respiratory chain (By similarity) (156 aa)
OXCT13-oxoacid CoA transferase 1; Key enzyme for ketone body catabolism. Transfers the CoA moiety from succinate to acetoacetate. Formation of the enzyme-CoA intermediate proceeds via an unstable anhydride species formed between the carboxylate groups of the enzyme and substrate (By similarity) (520 aa)
SNAP29synaptosomal-associated protein, 29kDa; SNAREs, Soluble N-ethylmaleimide-sensitive factor- attachment protein receptors, are essential proteins for fusion of cellular membranes. SNAREs localized on opposing membranes assemble to form a trans-SNARE complex, an extended, parallel four alpha-helical bundle that drives membrane fusion. SNAP29 is a SNARE involved in autophagy through the direct control of autophagosome membrane fusion with the lysososome membrane. Probably involved in multiple membrane trafficking steps (258 aa)
C1QBPcomplement component 1, q subcomponent binding protein; Is believed to be a multifunctional and multicompartmental protein involved in inflammation and infection processes, ribosome biogenesis, regulation of apoptosis, transcriptional regulation and pre-mRNA splicing. At the cell surface is thought to act as an endothelial receptor for plasma proteins of the complement and kallikrein-kinin cascades. Putative receptor for C1q; specifically binds to the globular "heads" of C1q thus inhibiting C1; may perform the receptor function through a complex with C1qR/CD93. In complex with cytokera [...] (282 aa)
ATP5EATP synthase, H+ transporting, mitochondrial F1 complex, epsilon subunit; Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled [...] (51 aa)
PMPCBpeptidase (mitochondrial processing) beta; Cleaves presequences (transit peptides) from mitochondrial protein precursors (By similarity) (489 aa)
ATP5A1ATP synthase, H+ transporting, mitochondrial F1 complex, alpha subunit 1, cardiac muscle; Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of [...] (553 aa)
ATP5OATP synthase, H+ transporting, mitochondrial F1 complex, O subunit; Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a [...] (213 aa)
C7orf55chromosome 7 open reading frame 55 (113 aa)
TMC1transmembrane channel-like 1; Probable ion channel required for the normal function of cochlear hair cells (By similarity) (760 aa)
CLPXClpX caseinolytic peptidase X homolog (E. coli); ATP-dependent specificity component of the Clp protease. It directs the protease to specific substrates. Can perform chaperone functions in the absence of clpP (By similarity) (633 aa)
ATP5HATP synthase, H+ transporting, mitochondrial Fo complex, subunit d; Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a [...] (161 aa)
CYCScytochrome c, somatic; Electron carrier protein. The oxidized form of the cytochrome c heme group can accept an electron from the heme group of the cytochrome c1 subunit of cytochrome reductase. Cytochrome c then transfers this electron to the cytochrome oxidase complex, the final protein carrier in the mitochondrial electron-transport chain (By similarity) (105 aa)
MRP63mitochondrial ribosomal protein 63 (102 aa)
MRPL46mitochondrial ribosomal protein L46 (279 aa)
NDUFV1NADH dehydrogenase (ubiquinone) flavoprotein 1, 51kDa; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity) (464 aa)
GRPEL2GrpE-like 2, mitochondrial (E. coli); Essential component of the PAM complex, a complex required for the translocation of transit peptide-containing proteins from the inner membrane into the mitochondrial matrix in an ATP-dependent manner. Seems to control the nucleotide-dependent binding of mitochondrial HSP70 to substrate proteins. Stimulates ATPase activity of mt-HSP70. May also serve to modulate the interconversion of oligomeric (inactive) and monomeric (active) forms of mt-HSP70 (By similarity) (225 aa)
LUC7L2LUC7-like 2 (S. cerevisiae); May bind to RNA via its Arg/Ser-rich domain (392 aa)
STOML2stomatin (EPB72)-like 2; Mitochondrial protein that probably regulates the biogenesis and the activity of mitochondria. Stimulates cardiolipin biosynthesis, binds cardiolipin-enriched membranes where it recruits and stabilizes some proteins including prohibitin and may therefore act in the organization of functional microdomains in mitochondrial membranes. Through regulation of the mitochondrial function may play a role into several biological processes including cell migration, cell proliferation, T-cell activation, calcium homeostasis and cellular response to stress. May play a role [...] (356 aa)
ATP5C1ATP synthase, H+ transporting, mitochondrial F1 complex, gamma polypeptide 1; Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is cou [...] (298 aa)
ATP5F1ATP synthase, H+ transporting, mitochondrial Fo complex, subunit B1; Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via [...] (256 aa)
PMPCApeptidase (mitochondrial processing) alpha; Cleaves presequences (transit peptides) from mitochondrial protein precursors (By similarity) (525 aa)
NDUFA8NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 8, 19kDa; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (172 aa)
CHCHD2coiled-coil-helix-coiled-coil-helix domain containing 2 (151 aa)
NT5DC25’-nucleotidase domain containing 2 (557 aa)
ATPAF2ATP synthase mitochondrial F1 complex assembly factor 2; May play a role in the assembly of the F1 component of the mitochondrial ATP synthase (ATPase) (289 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: medium (51%)