Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
PDE9A PDE9A PDE6G PDE6G PDE6D PDE6D PDE6B PDE6B ENTPD5 ENTPD5 PDE6A PDE6A NT5M NT5M ENTPD8 ENTPD8 PDE10A PDE10A NT5C NT5C ENSG00000250741 ENSG00000250741 PDE6H PDE6H PDE11A PDE11A NT5C3 NT5C3 ENTPD4 ENTPD4 PDE2A PDE2A NT5C2 NT5C2 GMPR GMPR CANT1 CANT1 HPRT1 HPRT1 PDE5A PDE5A AMPD1 AMPD1 AMPD2 AMPD2 ADSS ADSS UBC UBC GDA GDA
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
GDAguanine deaminase; Catalyzes the hydrolytic deamination of guanine, producing xanthine and ammonia (By similarity) (471 aa)
NT5C35’-nucleotidase, cytosolic III (336 aa)
NT5C5’, 3’-nucleotidase, cytosolic; Dephosphorylates the 5’ and 2’(3’)-phosphates of deoxyribonucleotides, with a preference for dUMP and dTMP, intermediate activity towards dGMP, and low activity towards dCMP and dAMP (201 aa)
PDE6Aphosphodiesterase 6A, cGMP-specific, rod, alpha; This protein participates in processes of transmission and amplification of the visual signal (860 aa)
AMPD2adenosine monophosphate deaminase 2 (879 aa)
GMPRguanosine monophosphate reductase; Catalyzes the irreversible NADPH-dependent deamination of GMP to IMP. It functions in the conversion of nucleobase, nucleoside and nucleotide derivatives of G to A nucleotides, and in maintaining the intracellular balance of A and G nucleotides (345 aa)
PDE6Hphosphodiesterase 6H, cGMP-specific, cone, gamma; Participates in processes of transmission and amplification of the visual signal. cGMP-PDEs are the effector molecules in G-protein-mediated phototransduction in vertebrate rods and cones (83 aa)
PDE11Aphosphodiesterase 11A; Plays a role in signal transduction by regulating the intracellular concentration of cyclic nucleotides cAMP and cGMP. Catalyzes the hydrolysis of both cAMP and cGMP to 5’-AMP and 5’- GMP, respectively (933 aa)
PDE6Dphosphodiesterase 6D, cGMP-specific, rod, delta; Acts as a GTP specific dissociation inhibitor (GDI). Increases the affinity of ARL3 for GTP by several orders of magnitude and does so by decreasing the nucleotide dissociation rate. Stabilizes Arl3-GTP by decreasing the nucleotide dissociation (By similarity) (150 aa)
PDE9Aphosphodiesterase 9A (593 aa)
HPRT1hypoxanthine phosphoribosyltransferase 1; Converts guanine to guanosine monophosphate, and hypoxanthine to inosine monophosphate. Transfers the 5- phosphoribosyl group from 5-phosphoribosylpyrophosphate onto the purine. Plays a central role in the generation of purine nucleotides through the purine salvage pathway (218 aa)
CANT1calcium activated nucleotidase 1; Calcium-dependent nucleotidase with a preference for UDP. The order of activity with different substrates is UDP > GDP > UTP > GTP. Has very low activity towards ADP and even lower activity towards ATP. Does not hydrolyze AMP and GMP. Involved in proteoglycan synthesis (401 aa)
PDE6Gphosphodiesterase 6G, cGMP-specific, rod, gamma; Participates in processes of transmission and amplification of the visual signal. cGMP-PDEs are the effector molecules in G-protein-mediated phototransduction in vertebrate rods and cones (87 aa)
PDE2Aphosphodiesterase 2A, cGMP-stimulated; Cyclic nucleotide phosphodiesterase with a dual- specificity for the second messengers cAMP and cGMP, which are key regulators of many important physiological processes (941 aa)
ENTPD5ectonucleoside triphosphate diphosphohydrolase 5; Uridine diphosphatase (UDPase) that promotes protein N- glycosylation and ATP level regulation. UDP hydrolysis promotes protein N-glycosylation and folding in the endoplasmic reticulum, as well as elevated ATP consumption in the cytosol via an ATP hydrolysis cycle. Together with CMPK1 and AK1, constitutes an ATP hydrolysis cycle that converts ATP to AMP and results in a compensatory increase in aerobic glycolysis. Also hydrolyzes GDP and IDP but not any other nucleoside di-, mono- or triphosphates, nor thiamine pyrophosphate. Plays a ke [...] (428 aa)
NT5C25’-nucleotidase, cytosolic II; May have a critical role in the maintenance of a constant composition of intracellular purine/pyrimidine nucleotides in cooperation with other nucleotidases. Preferentially hydrolyzes inosine 5’-monophosphate (IMP) and other purine nucleotides (561 aa)
UBCubiquitin C (685 aa)
PDE5Aphosphodiesterase 5A, cGMP-specific; Plays a role in signal transduction by regulating the intracellular concentration of cyclic nucleotides. This phosphodiesterase catalyzes the specific hydrolysis of cGMP to 5’- GMP (875 aa)
ENTPD4ectonucleoside triphosphate diphosphohydrolase 4; Hydrolyzes preferentially nucleoside 5’-diphosphates, nucleoside 5’-triphosphates are hydrolyzed only to a minor extent. The order of activity with different substrates is UDP >> GDP = CDP = TDP, AMP, ADP, ATP and UMP are not substrates. Preferred substrates for isoform 2 are CTP, UDP, CDP, GTP and GDP, while isoform 1 utilizes UTP and TTP (616 aa)
ADSSadenylosuccinate synthase; Plays an important role in the de novo pathway and in the salvage pathway of purine nucleotide biosynthesis. Catalyzes the first commited step in the biosynthesis of AMP from IMP (By similarity) (456 aa)
ENTPD8ectonucleoside triphosphate diphosphohydrolase 8; Canalicular ectonucleoside NTPDase responsible for the main hepatic NTPDase activity. Ectonucleoside NTPDases catalyze the hydrolysis of gamma- and beta-phosphate residues of nucleotides, playing a central role in concentration of extracellular nucleotides. Has activity toward ATP, ADP, UTP and UDP, but not toward AMP (495 aa)
NT5M5’,3’-nucleotidase, mitochondrial; Dephosphorylates specifically the 5’ and 2’(3’)- phosphates of uracil and thymine deoxyribonucleotides, and so protects mitochondrial DNA replication from excess dTTP. Has only marginal activity towards dIMP and dGMP (228 aa)
PDE6Bphosphodiesterase 6B, cGMP-specific, rod, beta; This protein participates in processes of transmission and amplification of the visual signal. Necessary for the formation of a functional phosphodiesterase holoenzyme (854 aa)
AMPD1adenosine monophosphate deaminase 1; AMP deaminase plays a critical role in energy metabolism (780 aa)
ENSG00000250741NT5C1B-RDH14 readthrough (602 aa)
PDE10Aphosphodiesterase 10A; Plays a role in signal transduction by regulating the intracellular concentration of cyclic nucleotides. Can hydrolyze both cAMP and cGMP, but has higher affinity for cAMP and is more efficient with cAMP as substrate (789 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: medium (56%)