Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
NHP2L1 NHP2L1 DNAJC8 DNAJC8 ALYREF ALYREF SNRPB2 SNRPB2 DDX23 DDX23 PRPF6 PRPF6 SNRPD3 SNRPD3 SNRPA1 SNRPA1 UPF3B UPF3B HNRNPH1 HNRNPH1 POLR2E POLR2E CCAR1 CCAR1 SF3A2 SF3A2 POLR2K POLR2K PCBP1 PCBP1 SRSF9 SRSF9 PCF11 PCF11 POLR2L POLR2L YBX1 YBX1 NUDT21 NUDT21 PHF5A PHF5A CSTF2 CSTF2 SNRPD1 SNRPD1 CPSF7 CPSF7 UBC UBC CPSF6 CPSF6
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
POLR2Epolymerase (RNA) II (DNA directed) polypeptide E, 25kDa; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Common component of RNA polymerases I, II and III which synthesize ribosomal RNA precursors, mRNA precursors and many functional non-coding RNAs, and small RNAs, such as 5S rRNA and tRNAs, respectively. Pol II is the central component of the basal RNA polymerase II transcription machinery. Pols are composed of mobile elements that move relative to each other. In Pol II, POLR2E/RPB5 is part of the low [...] (210 aa)
SNRPD3small nuclear ribonucleoprotein D3 polypeptide 18kDa; Appears to function in the U7 snRNP complex that is involved in histone 3’-end processing. Binds to the downstream cleavage product (DCP) of histone pre-mRNA in a U7 snRNP dependent manner (126 aa)
NHP2L1NHP2 non-histone chromosome protein 2-like 1 (S. cerevisiae); Binds to the 5’-stem-loop of U4 snRNA and may play a role in the late stage of spliceosome assembly. The protein undergoes a conformational change upon RNA-binding (128 aa)
PHF5APHD finger protein 5A; Acts as a transcriptional regulator by binding to the GJA1/Cx43 promoter and enhancing its up-regulation by ESR1/ER- alpha. Also involved in pre-mRNA splicing (110 aa)
SF3A2splicing factor 3a, subunit 2, 66kDa; Subunit of the splicing factor SF3A required for ’A’ complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence (BPS) in pre-mRNA. Sequence independent binding of SF3A/SF3B complex upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA. May also be involved in the assembly of the ’E’ complex (464 aa)
SRSF9serine/arginine-rich splicing factor 9; Plays a role in constitutive splicing and can modulate the selection of alternative splice sites. Represses the splicing of MAPT/Tau exon 10 (221 aa)
SNRPB2small nuclear ribonucleoprotein polypeptide B; Involved in pre-mRNA splicing. This protein is associated with snRNP U2. It binds stem loop IV of U2 snRNA only in presence of the U2A’ protein (225 aa)
SNRPA1small nuclear ribonucleoprotein polypeptide A’; This protein is associated with sn-RNP U2. It helps the A’ protein to bind stem loop IV of U2 snRNA (255 aa)
DNAJC8DnaJ (Hsp40) homolog, subfamily C, member 8 (253 aa)
CCAR1cell division cycle and apoptosis regulator 1 (1150 aa)
PRPF6PRP6 pre-mRNA processing factor 6 homolog (S. cerevisiae) (941 aa)
UPF3BUPF3 regulator of nonsense transcripts homolog B (yeast); Involved in nonsense-mediated decay (NMD) of mRNAs containing premature stop codons by associating with the nuclear exon junction complex (EJC) and serving as link between the EJC core and NMD machinery. Recruits UPF2 at the cytoplasmic side of the nuclear envelope and the subsequent formation of an UPF1-UPF2- UPF3 surveillance complex (including UPF1 bound to release factors at the stalled ribosome) is believed to activate NMD. In cooperation with UPF2 stimulates both ATPase and RNA helicase activities of UPF1. Binds spliced mR [...] (483 aa)
PCF11PCF11, cleavage and polyadenylation factor subunit, homolog (S. cerevisiae); Component of pre-mRNA cleavage complex II (1555 aa)
NUDT21nudix (nucleoside diphosphate linked moiety X)-type motif 21; Component of the cleavage factor Im (CFIm) complex that plays a key role in pre-mRNA 3’-processing. Involved in association with CPSF6 or CPSF7 in pre-MRNA 3’-end poly(A) site cleavage and poly(A) addition. NUDT21/CPSF5 binds to cleavage and polyadenylation RNA substrates. The homodimer mediates simultaneous sequence-specific recognition of two 5’-UGUA-3’ elements within the pre-mRNA. Binds to, but does not hydrolyze mono- and di-adenosine nucleotides. May have a role in mRNA export (227 aa)
SNRPD1small nuclear ribonucleoprotein D1 polypeptide 16kDa; May act as a charged protein scaffold to promote snRNP assembly or strengthen snRNP-snRNP interactions through nonspecific electrostatic contacts with RNA (119 aa)
PCBP1poly(rC) binding protein 1; Single-stranded nucleic acid binding protein that binds preferentially to oligo dC (356 aa)
DDX23DEAD (Asp-Glu-Ala-Asp) box polypeptide 23; Involved in pre-mRNA splicing and its phosphorylated form (by SRPK2) is required for spliceosomal B complex formation (820 aa)
POLR2Lpolymerase (RNA) II (DNA directed) polypeptide L, 7.6kDa; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Common component of RNA polymerases I, II and III which synthesize ribosomal RNA precursors, mRNA precursors and many functional non-coding RNAs, and a small RNAs, such as 5S rRNA and tRNAs, respectively. Pol II is the central component of the basal RNA polymerase II transcription machinery. Pols are composed of mobile elements that move relative to each other. In Pol II, POLR2L/RBP10 is part of the [...] (67 aa)
POLR2Kpolymerase (RNA) II (DNA directed) polypeptide K, 7.0kDa; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Common component of RNA polymerases I, II and III which synthesize ribosomal RNA precursors, mRNA precursors and many functional non-coding RNAs, and a small RNAs, such as 5S rRNA and tRNAs, respectively (58 aa)
UBCubiquitin C (685 aa)
CPSF7cleavage and polyadenylation specific factor 7, 59kDa; Component of the cleavage factor Im complex (CFIm) that plays a key role in pre-mRNA 3’ processing. Binds to cleavage and polyadenylation RNA substrates (514 aa)
HNRNPH1heterogeneous nuclear ribonucleoprotein H1 (H); This protein is a component of the heterogeneous nuclear ribonucleoprotein (hnRNP) complexes which provide the substrate for the processing events that pre-mRNAs undergo before becoming functional, translatable mRNAs in the cytoplasm. Mediates pre-mRNA alternative splicing regulation. Inhibits, together with CUGBP1, insulin receptor (IR) pre-mRNA exon 11 inclusion in myoblast. Binds to the IR RNA. Binds poly(RG) (449 aa)
YBX1Y box binding protein 1; Mediates pre-mRNA alternative splicing regulation. Binds to splice sites in pre-mRNA and regulates splice site selection. Binds and stabilizes cytoplasmic mRNA. Contributes to the regulation of translation by modulating the interaction between the mRNA and eukaryotic initiation factors (By similarity). Regulates the transcription of numerous genes. Its transcriptional activity on the multidrug resistance gene MDR1 is enhanced in presence of the APEX1 acetylated form at ’Lys-6’ and ’Lys-7’. Binds to promoters that contain a Y-box (5’-CTGATTGGCCAA-3’), such as MD [...] (324 aa)
CSTF2cleavage stimulation factor, 3’ pre-RNA, subunit 2, 64kDa; One of the multiple factors required for polyadenylation and 3’-end cleavage of mammalian pre-mRNAs. This subunit is directly involved in the binding to pre-mRNAs (By similarity) (577 aa)
CPSF6cleavage and polyadenylation specific factor 6, 68kDa; Component of the cleavage factor Im complex (CFIm) that plays a key role in pre-mRNA 3’-processing. Involved in association with NUDT21/CPSF5 in pre-MRNA 3’-end poly(A) site cleavage and poly(A) addition. CPSF6 binds to cleavage and polyadenylation RNA substrates and promotes RNA looping (551 aa)
ALYREFAly/REF export factor; Component of the THO subcomplex of the TREX complex. The TREX complex specifically associates with spliced mRNA and not with unspliced pre-mRNA. It is recruited to spliced mRNAs by a transcription-independent mechanism. Binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region near the 5’ end of the mRNA where it functions in mRNA export. The recruitment occurs via an interaction between ALYREF/THOC4 and the cap-binding protein NCBP1. DDX39B functions as a bridge between ALYREF/THOC4 and the THO [...] (264 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: medium (56%)