Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
NDUFS7 NDUFS7 NDUFV3 NDUFV3 NDUFC1 NDUFC1 NDUFS3 NDUFS3 NDUFB5 NDUFB5 NDUFS4 NDUFS4 NDUFA9 NDUFA9 NDUFAF1 NDUFAF1 NDUFC2 NDUFC2 NDUFB7 NDUFB7 NDUFV2 NDUFV2 NDUFB4 NDUFB4 NDUFV1 NDUFV1 NDUFB10 NDUFB10 NDUFA10 NDUFA10 NDUFS6 NDUFS6 NDUFB2 NDUFB2 ENSG00000267855 ENSG00000267855 NDUFB11 NDUFB11 NDUFS8 NDUFS8 NDUFA12 NDUFA12 NDUFB8 NDUFB8 NDUFB1 NDUFB1 NDUFB3 NDUFB3 NDUFB9 NDUFB9 NDUFA4 NDUFA4
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
NDUFB4NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 4, 15kDa; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (129 aa)
NDUFB7NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 7, 18kDa; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (137 aa)
NDUFS7NADH dehydrogenase (ubiquinone) Fe-S protein 7, 20kDa (NADH-coenzyme Q reductase); Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity) (213 aa)
NDUFB3NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 3, 12kDa; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (98 aa)
NDUFB2NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 2, 8kDa; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (105 aa)
NDUFA10NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 10, 42kDa; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (355 aa)
NDUFB5NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 5, 16kDa; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (189 aa)
NDUFAF1NADH dehydrogenase (ubiquinone) complex I, assembly factor 1; Chaperone protein involved in the assembly of the mitochondrial NADH-ubiquinone oxidoreductase complex (complex I) (By similarity) (327 aa)
NDUFS3NADH dehydrogenase (ubiquinone) Fe-S protein 3, 30kDa (NADH-coenzyme Q reductase); Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity) (264 aa)
NDUFC1NADH dehydrogenase (ubiquinone) 1, subcomplex unknown, 1, 6kDa; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (76 aa)
NDUFA9NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 9, 39kDa; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (377 aa)
NDUFB10NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 10, 22kDa; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (172 aa)
NDUFS6NADH dehydrogenase (ubiquinone) Fe-S protein 6, 13kDa (NADH-coenzyme Q reductase); Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (124 aa)
NDUFB11NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 11, 17.3kDa; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (163 aa)
NDUFB9NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 9, 22kDa; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed to be not involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (179 aa)
NDUFC2NADH dehydrogenase (ubiquinone) 1, subcomplex unknown, 2, 14.5kDa; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity) (119 aa)
NDUFS4NADH dehydrogenase (ubiquinone) Fe-S protein 4, 18kDa (NADH-coenzyme Q reductase); Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (175 aa)
NDUFB8NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 8, 19kDa; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (186 aa)
ENSG00000267855NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 7 ; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (113 aa)
NDUFS8NADH dehydrogenase (ubiquinone) Fe-S protein 8, 23kDa (NADH-coenzyme Q reductase); Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). May donate electrons to ubiquinone (210 aa)
NDUFV1NADH dehydrogenase (ubiquinone) flavoprotein 1, 51kDa; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity) (464 aa)
NDUFV2NADH dehydrogenase (ubiquinone) flavoprotein 2, 24kDa; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity) (249 aa)
NDUFA12NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 12; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (145 aa)
NDUFB1NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 1, 7kDa; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (105 aa)
NDUFA4NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 4, 9kDa; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed to be not involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (81 aa)
NDUFV3NADH dehydrogenase (ubiquinone) flavoprotein 3, 10kDa; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (473 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: medium (43%)