Full Link:
  • Version:
  • 10.0 (archived version)
STRINGSTRING
KCNJ9 KCNJ9 GABBR2 GABBR2 PLCB4 PLCB4 GNG2 GNG2 GNGT2 GNGT2 KCNJ3 KCNJ3 LPAR5 LPAR5 GNG4 GNG4 GNB4 GNB4 HTR1B HTR1B GNGT1 GNGT1 GNG3 GNG3 GNB2 GNB2 GNG10 GNG10 PRKACB PRKACB GCG GCG GNG5 GNG5 GNG7 GNG7 GNG12 GNG12 GCGR GCGR GNB1 GNB1 PIK3CB PIK3CB LPAR1 LPAR1 GNAS GNAS ADCY10 ADCY10 UBC UBC
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Size
small protein node
small nodes:
protein of unknown 3D structure
large protein node
large nodes:
some 3D structure is known or predicted
Node Color
colored protein node
colored nodes:
query proteins and first shell of interactors
non-colored protein node
white nodes:
second shell of interactors
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
database edge
from curated databases
experiment edge
experimentally determined
Predicted Interactions
neighborhood edge
gene neighborhood
fusion edge
gene fusions
cooccurrence edge
gene co-occurrence
Others
textmining edge
textmining
coexpression edge
co-expression
homology edge
protein homology
Your Input:
GNB4guanine nucleotide binding protein (G protein), beta polypeptide 4; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein- effector interaction (340 aa)
GNGT1guanine nucleotide binding protein (G protein), gamma transducing activity polypeptide 1; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein- effector interaction (By similarity) (74 aa)
GABBR2gamma-aminobutyric acid (GABA) B receptor, 2; Receptor for GABA. The activity of this receptor is mediated by G-proteins that inhibit adenylyl cyclase activity, stimulates phospholipase A2, activates potassium channels, inactivates voltage-dependent calcium-channels and modulates inositol phospholipids hydrolysis. Plays a critical role in the fine-tuning of inhibitory synaptic transmission. Pre-synaptic GABA-B-R inhibit neurotransmitter release by down-regulating high- voltage activated calcium channels, whereas postsynaptic GABA-B-R decrease neuronal excitability by activating a promi [...] (941 aa)
PIK3CBphosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit beta; Phosphoinositide-3-kinase (PI3K) that phosphorylates PtdIns (Phosphatidylinositol), PtdIns4P (Phosphatidylinositol 4- phosphate) and PtdIns(4,5)P2 (Phosphatidylinositol 4,5- bisphosphate) to generate phosphatidylinositol 3,4,5-trisphosphate (PIP3). PIP3 plays a key role by recruiting PH domain-containing proteins to the membrane, including AKT1 and PDPK1, activating signaling cascades involved in cell growth, survival, proliferation, motility and morphology. Involved in the activation of AKT1 upon stimulation by G- [...] (1070 aa)
GNG3guanine nucleotide binding protein (G protein), gamma 3; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein- effector interaction (75 aa)
KCNJ3potassium inwardly-rectifying channel, subfamily J, member 3; This potassium channel is controlled by G proteins. Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium. This receptor plays a crucial role in regulati [...] (501 aa)
GNGT2guanine nucleotide binding protein (G protein), gamma transducing activity polypeptide 2; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein- effector interaction (By similarity) (69 aa)
GNB2guanine nucleotide binding protein (G protein), beta polypeptide 2; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein- effector interaction (340 aa)
LPAR5lysophosphatidic acid receptor 5; Receptor for lysophosphatidic acid (LPA), a mediator of diverse cellular activities (372 aa)
PLCB4phospholipase C, beta 4 (1194 aa)
GNG2guanine nucleotide binding protein (G protein), gamma 2; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein- effector interaction (By similarity) (71 aa)
UBCubiquitin C (685 aa)
LPAR1lysophosphatidic acid receptor 1; Receptor for lysophosphatidic acid (LPA), a mediator of diverse cellular activities. Seems to be coupled to the G(i)/G(o), G(12)/G(13), and G(q) families of heteromeric G proteins. Stimulates phospholipase C (PLC) activity in a manner that is dependent on RALA activation (364 aa)
GNG4guanine nucleotide binding protein (G protein), gamma 4; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein- effector interaction (By similarity) (75 aa)
ADCY10adenylate cyclase 10 (soluble); Soluble adenylyl cyclase that has a critical role in mammalian spermatogenesis. Produces the cAMP which mediates in part the cAMP-responsive nuclear factors indispensable for maturation of sperm in the epididymis. Induces capacitation, the maturational process that sperm undergo prior to fertilization. May be the bicarbonate sensor. Involved in ciliary beat regulation (1610 aa)
KCNJ9potassium inwardly-rectifying channel, subfamily J, member 9; This receptor is controlled by G proteins. Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium (By similarity) (393 aa)
HTR1B5-hydroxytryptamine (serotonin) receptor 1B, G protein-coupled; This is one of the several different receptors for 5- hydroxytryptamine (serotonin), a biogenic hormone that functions as a neurotransmitter, a hormone, and a mitogen. The activity of this receptor is mediated by G proteins that inhibit adenylate cyclase activity (390 aa)
GNG5guanine nucleotide binding protein (G protein), gamma 5; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein- effector interaction (68 aa)
PRKACBprotein kinase, cAMP-dependent, catalytic, beta (398 aa)
GNG12guanine nucleotide binding protein (G protein), gamma 12; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein- effector interaction (By similarity) (72 aa)
GNASGNAS complex locus; Guanine nucleotide-binding proteins (G proteins) are involved as modulators or transducers in various transmembrane signaling systems. The G(s) protein is involved in hormonal regulation of adenylate cyclase- it activates the cyclase in response to beta-adrenergic stimuli. XLas isoforms interact with the same set of receptors as Gnas isoforms (By similarity) (1037 aa)
GNG10guanine nucleotide binding protein (G protein), gamma 10; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein- effector interaction. Interacts with beta-1 and beta-2, but not with beta-3 (68 aa)
GNB1guanine nucleotide binding protein (G protein), beta polypeptide 1; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein- effector interaction (340 aa)
GNG7guanine nucleotide binding protein (G protein), gamma 7; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein- effector interaction. Plays a role in the regulation of adenylyl cyclase signaling in certain regions of the brain. Plays a role in the formation or stabilzation of a G protein heterotrimer (G(olf) subunit alpha-beta-gamma-7) that is required for adenylyl cyclase activity in the striat [...] (68 aa)
GCGRglucagon receptor; This is a receptor for glucagon which plays a central role in regulating the level of blood glucose by controlling the rate of hepatic glucose production and insulin secretion. The activity of this receptor is mediated by G proteins which activate adenylyl cyclase and also a phosphatidylinositol-calcium second messenger system (477 aa)
GCGglucagon; Glicentin may modulate gastric acid secretion and the gastro-pyloro-duodenal activity. May play an important role in intestinal mucosal growth in the early period of life (180 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo, Homo sapiens, human, man
Server load: medium (57%)